Skip to main content

Advertisement

Log in

Interaction Effect of Scomberomorus Guttatus-Derived Hydroxyapatite and Montmorillonite on the Characteristics of Polylactic Acid Blends for Biomedical Application

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The objective of this work was to investigate the effect of Mackerel-derived hydroxyapatite (MHAp) and native montmorillonite (MMT) on the mechanical-physico properties of the polylactic acid (PLA) blends. Various amounts of MHAp (2 to 10 phr) and MMT (0 to 4 phr) were added into PLA matrix by using melt-blending method. The results of tensile test and X-ray diffraction analyses indicated that the reinforcing and nucleating effect of MHAp on PLA matrix has effectively improved the tensile strength and crystallinity of pristine PLA. The addition of MMT particles has significantly increased the mechanical strength but decreased the crystallinity of relevant PLA/MHAp composites, indicates the effective melt intercalation of PLA matrix into MMT interlayer space. The d-spacing of MMT deflection peak could be increased by further increasing of MMT loading from 2 to 4 phr in PLA/MHAp/MMT blends. This indicates the occurrence of PLA hydrolysis during melt compounding at higher MMT loading level, being supported by the FTIR analysis and the deterioration in morphological properties of PLA ternary composites. However, the hydrolytic degradation-induced increment of PLA functional groups for reaction with excessive amount MHAp could counterbalance the adverse effect of interfacial tension between PLA and MHAp (8-10phr) on mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wan YZ, Wu CQ, Xiong GY, Zuo GF, Jin J, Ren KJ, Zhu Y, Wang ZR, Luo HL (2015) Mechanical properties and cytotoxicity of nanoplate-like hydroxyapatite/polylactide nanocomposites prepared by intercalation technique. J Mech Behav Biomed Mater 47:29–37

    CAS  PubMed  Google Scholar 

  2. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366

    CAS  PubMed  Google Scholar 

  3. Piergiorgio G, Valeria C, Irene C, Paul VH (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640

    Google Scholar 

  4. Nieddu E, Mazzucco L, Gentile P, Benko T, Balbo V, Mandrile R, Ciardelli G (2009) Preparation and biodegradation of clay composites of PLA. React Funct Polym 69:371–379

    CAS  Google Scholar 

  5. Dadbin S, Kheirkhah Y (2014) Gamma irradiation of melt processed biomedical PDLLA/HAP nanocomposites. Radiat Phys Chem 97:270–274

    CAS  Google Scholar 

  6. Deplaine H, Gómez Ribelles JL, Gallego Ferrer G (2010) Effect of the content of hydroxyapatite nanoparticles on the properties and bioactivity of poly(L-lactide) - hybrid membranes. Compos Sci Technol 70:1805–1812

    CAS  Google Scholar 

  7. Lijuan X, Liuyun J, Chengdong X, Lixin J, Ye L (2014) Study on a novel double-layered composite membrane of mg-substituted nano-hydroxyapatite/poly(L-lactide-co-ε-caprolactone): effect of different L-lactide/ε-caprolactone ratios. Mater Sci Eng A 615:361–366

    Google Scholar 

  8. Hong Z, Zhang PB, He CL, Qiu XY, Liu AX, Chen L, Chen XS, Jing XB (2005) Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials 26:6296–6304

    CAS  PubMed  Google Scholar 

  9. Zhao W, Li JJ, Jin KX, Liu WL, Qiu XF, Li CR (2016) Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mater Sci Eng C 59:1181–1194

    CAS  Google Scholar 

  10. Soltani Z, Ziaie F, Ghaffari M, Afarideh H, Ehsani M (2013) Mechanical and thermal properties and morphological studies of 10 MeV electron beam irradiated LDPE/hydroxyapatite nano-composite. Radiat Phys Chem 83:79–85

    CAS  Google Scholar 

  11. Torabinejad B, Mohammadi-Rovshandeh J, Davachi SM, Zamanian A (2014) Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering. Mater Sci Eng C 42:199–210

    CAS  Google Scholar 

  12. Mathieu LM, Bourban PE, JAE M, s (2006) Processing of homogeneous ceramic/polymer blends for bioresorbable composites. Compos Sci Technol 66:1606–1614

  13. Li XM, Feng QL, Cui FZ (2006) In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres. Mater Sci Eng C 26:716–720

    CAS  Google Scholar 

  14. Venkatesan J, Lowe B, Manivasagan P, Kang KH, Chalisserry EP, Anil S, Kim DG, Kim SK (2015) Isolation and characterization of Nano-hydroxyapatite from Salmon fish bone. Materials 8:5426–5439

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferraro V, Cruz IB, Jorge RF, Malcata FX, Pintado ME, Castro PML (2010) Valorisation of natural extracts from marine source focused on marine by-products: a review. Food Res Int 43:2221–2233

    Google Scholar 

  16. Kusmanto F, Walker G, Gan Q, Walsh P, Buchanan F, Dickson G, McCaigue M, Maggs C, Dring M (2008) Development of composite tissue scaffolds containing naturally sourced microporous hydroxyapatite. Chem Eng J 139:398–407

    CAS  Google Scholar 

  17. Akram M, Ahmed R, Shakir I, Ibrahim WAW, Hussain R (2013) Extracting hydroxyapatite and its precursors from natural resources. J Mater Sci 49(4):1461

    Google Scholar 

  18. Naga SM, El-Maghraby HF, Mahmoud EM, Talaat MS, Ibrhim AM (2015) Preparation and characterization of highly porous ceramic scaffolds based on thermally treated fish bone. Ceram Int 41:15010

    CAS  Google Scholar 

  19. Ferraro V, Carvalho AP, Piccirillo C, Santos MM, Castro PML, Pintado ME (2013) Extraction of high added value biological compounds from sardine, sardine-type fish and mackerel canning residues — a review. Mater Sci Eng C 33:3111–3120

    CAS  Google Scholar 

  20. Ruiz-Hitzky E, Darder M, Fernandes FM, Wicklein B, Alcântara ACS, Aranda P (2013) Fibrous clays based bionanocomposites. Prog Polym Sci 38:1392–1414

    CAS  Google Scholar 

  21. Yuan QH, Qin CP, Wu JB, Xu AP, Zhang ZQ, Liao JQ, Lin SX, Ren XZ, Zhang PX (2016) Synthesis and characterization of cerium-doped hydroxyapatite/polylactic acid composite coatings on metal substrates. Mater Chem Phys 182:365–371

    CAS  Google Scholar 

  22. Petricca SE, Marra KG, Kumta PN (2006) Chemical synthesis of poly(lactic-co-glycolic acid)/hydroxyapatite composites for orthopaedic applications. Acta Biomater 2:277–286

    PubMed  Google Scholar 

  23. Mostafa AA, Oudadesse H, Mohamed MB, Foad ES, Gal YL, Cathelineau G (2009) Convenient approach of nanohydroxyapatite polymeric matrix composites. Chem Eng J 153:187–192

    CAS  Google Scholar 

  24. Foggia MD, Corda U, Plescia E, Taddei P, Torreggiani A (2010) Effects of sterilisation by high-energy radiation on biomedical poly-(ε-caprolactone)/hydroxyapatite composites. J Mater Sci Mater Med 21:1789–1797

    PubMed  Google Scholar 

  25. Liuyun J, Chengdong X, Lixin J, Lijuan X (2014) Effect of hydroxyapatite with different morphology on the crystallization behavior, mechanical property and in vitro degradation of hydroxyapatite/poly(lactic-co-glycolic) composite. Compos Sci Technol 93:61–67

    Google Scholar 

  26. Bouakaz BS, Pillin I, Habi A, Grohens Y (2015) Synergy between fillers in Organomontmorillonite/Graphene-PLA nanocomposites. Appl Clay Sci 116–117:69

    Google Scholar 

  27. Tee TT, Sin LT, Gobinath R, Bee ST, Hui D, Rahmat AR, Kong I, Fang QH (2013) Investigation of nano-size montmorillonite on enhancing polyvinyl alcohol–starch blends prepared via solution cast approach. Compos Part B Eng 47:238–247

    CAS  Google Scholar 

  28. Arjmandi R, Hassan A, Mohamad-Haafiz MK, Zakaria Z, Inuwa IM (2014) Characterization of polylactic acid/microcrystalline cellulose/montromorillonite hybrid composites. The Malaysian Journal of Analytical Sciences 18(3):642

    Google Scholar 

  29. Ray SS, Okamoto M (2003) Polymer/layered silicate Nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539

    CAS  Google Scholar 

  30. Giraldo LF, Camilo P, Kyu T (2016) Incorporation of silver in montmorillonite-type phyllosilicates as potential antibacterial material. Curr Opin Chem Eng 11:7–13

    Google Scholar 

  31. Hassan MM (2015) Synergistic effect of montmorillonite–clay and gamma irradiation on the characterizations of waste polyamide copolymer and reclaimed rubber powder nanocomposites. Compos Part B Eng 79:28–34

    CAS  Google Scholar 

  32. Peponi L, Puglia D, Torre L, Valentini L, Kenny JM (2014) Processing of nanostructured polymers and advanced polymeric based nanocomposites. Mater Sci Eng R 85:1–46

    Google Scholar 

  33. Fernández MJ, Fernández MD, Aranburu I (2013) Poly(l-lactic acid)/organically modified vermiculite nanocomposites prepared by melt compounding: effect of clay modification on microstructure and thermal properties. Eur Polym J 49:1257–1267

    Google Scholar 

  34. Fernández MJ, Fernández MD, Aranburu I (2013) Effect of clay surface modification and organoclay purity on microstructure and thermal properties of poly(L-lactic acid)/vermiculite nanocomposites. Appl Clay Sci 80–81:372

    Google Scholar 

  35. Morgan AB, Gilman JW (2002) Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J Appl Polym Sci 87(8):1329

    Google Scholar 

  36. Michael FM, Ratnam CT, Khalid M, Ramarad S, Walvekar R (2017) Surface modification of nanohydroxyapatite and its loading effect on polylactic acid properties for load bearing implants. Polym Compos 39(8):2880

    Google Scholar 

  37. Zaidi L, Bruzaud S, Bourmaud A, Me’de’ric P, Kaci M, Grohens Y (2010) Relationship between structure and rheological, mechanical and thermal properties of polylactide/cloisite 30B nanocomposites. J Appl Polym Sci 116:1357

    CAS  Google Scholar 

  38. Suljovrujic E, Ignjatovic N, Uskokovic D, Mitric M, Mitrovic M, Tomic S (2007) Radiation-induced degradation of hydroxyapatite/polyL-lactide composite biomaterial. Radiat Phys Chem 76:722–728

    CAS  Google Scholar 

  39. Venkatesan J, Kim SK (2013) Hydroxyapatite from marine fish bone: isolation and characterization techniques. Marine biomaterials. Hydroxyapatite from marine fish bone chap 2:17

  40. Rajesh R, Hariharasubramanian A, Ravichandran D (2012) Chicken bone as a bioresource for the bioceramic (hydroxyapatite). Phosphorus Sulfur Silicon Relat Elem 187:914–925

    CAS  Google Scholar 

  41. Choi D, Marra KG, Kumta PN (2004) Chemical synthesis of hydroxyapatite/poly(ε-caprolactone) composites. Mater Res Bull 39:417–432

    CAS  Google Scholar 

  42. Lombardi M, Palmero P, Haberko K, Pyda W, Montanaro L (2011) Processing of a natural hydroxyapatite powder: from powder optimization to porous bodies development. J Eur Ceram Soc 31:2513–2518

    CAS  Google Scholar 

  43. Alothman OY, Almajhdi FN, Fouad H (2013) Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration. Biomed Eng Online 12(1):95

    PubMed  PubMed Central  Google Scholar 

  44. Bhowmik R, Katti KS, Katti D (2007) Molecular dynamics simulation of hydroxyapatiteepolyacrylic acid interfaces. Polymer 48:664–674

    CAS  Google Scholar 

  45. Kasuga T, Ota Y, Nogami M, Abe Y (2001) Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 22:19

    CAS  PubMed  Google Scholar 

  46. Berger S, Müller E, Schnabelrauch M (2009) Influence of methacrylate-containing surface modifiers on the mechanical properties of nano-hydroxyapatite/polylactide network composites. Mater Lett 63:2714–2717

    CAS  Google Scholar 

  47. Ahmad Z, Mark JE (1998) Biomimetic materials: recent developments in organic-inorganic hybrids. Mater Sci Eng C 6:183–196

    Google Scholar 

  48. Balakrishnan H, Hassan A, Wahit MU, Yussuf AA, Abdul Razak SB (2010) Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Mater Des 31:3289–3298

    CAS  Google Scholar 

  49. Malwela T, Ray SS (2015) Enzymatic degradation behavior of nanoclay reinforced biodegradable PLA/PBSA blend composites. Int J Biol Macromol 77:131–142

    CAS  PubMed  Google Scholar 

  50. Thellen C, Orroth C, Froio D, Ziegler D, Lucciarini J, Farrell R, D’Souza NA, Ratto JA (2005) Influence of Montmorillonite layered silicate on plasticized poly (L-Lactide) blown films. Polymer 46:11716–11727

    CAS  Google Scholar 

  51. Neppalli R, Causin V, Marega C, Modesti M, Adhikari R, Scholtyssek S, Ray SS, Marigo A (2014) The effect of different clays on the structure, morphology and degradation behavior of poly (lactic acid). Appl Clay Sci 87:278–284

    CAS  Google Scholar 

  52. Fukushima K, Wu MH, Bocchini S, Rasyida A, Yang MC (2012) PBAT based nanocomposites for medical and industrial applications. Mater Sci Eng C 32:1331–1351

    CAS  Google Scholar 

  53. Zembouai I, Kaci M, Bruzaud S, Pillin I, Audic JL, Shayanfar S, Pillai SD (2016) Electron beam radiation effects on properties and ecotoxicity of PHBV/PLA blends in presence of organo-modified montmorillonite. Polym Degrad Stab 132:117–126

    CAS  Google Scholar 

  54. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in green the 21st century materials word. Prog Mater Sci 50:962

    CAS  Google Scholar 

  55. Gad YH (2009) Improving the properties of poly(ethylene-co-vinyl acetate)/clay composite by using electron beam irradiation. Nucl Instrum Methods Phys Res B 267:3528–3534

    CAS  Google Scholar 

  56. Depan D, Kumar AP, Singh RP (2009) Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite. Acta Biomater 5:93–100

    CAS  PubMed  Google Scholar 

  57. Cailloux J, Hakim RN, Santana OO, Bou J, Abt T, Sánchez-Soto M, Carrasco F, Maspoch ML (2016) Reactive extrusion: a useful process to manufacture structurally modified PLA/o-MMT composites. Compos Part A Appl Sci Manuf 88:106–115

    CAS  Google Scholar 

  58. Badrinarayanan P, Ko FK, Wang CH, Richard BA, Kessler MR (2014) Investigation of the effect of clay nanoparticles on the thermal behavior of PLA using a heat flux rapid scanning rate calorimeter. Polym Test 35:1–9

    CAS  Google Scholar 

  59. Fukushima K, Tabuani D, Arena M, Gennari M, Camino G (2013) Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. React Funct Polym 73:540–549

    CAS  Google Scholar 

  60. Yıldırıma Y, Oral A (2014) The influence of γ-ray irradiation on the thermal stability and molecular weight of poly(l-lactic acid) and its nanocomposites. Radiat Phys Chem 96:69–74

    Google Scholar 

  61. Alothman OY, Fouad H, Al-Zahrani SM, Eshra A, Al Rez MF, Ansari SG (2014) Thermal, creep-recovery and viscoelastic behavior of high density polyethylene/hydroxyapatite nano particles for bone substitutes: effects of gamma radiation. Biomed Eng Online 13:125

    PubMed  PubMed Central  Google Scholar 

  62. Li JJ, Dou Y, Yang J, Yin Y, Zhang H, Yao FL, Wang HB, Yao KD (2009) Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan-gelatin network films. Mater Sci Eng C 29(4):1207–1215

    CAS  Google Scholar 

  63. Zaidi L, Bruzaud S, Kaci M, Bourmaud A, Gautier N, Grohens Y (2013) The effects of gamma irradiation on the morphology and properties of polylactide/Cloisite 30B nanocomposites. Polym Degrad Stab 98:348–355

    CAS  Google Scholar 

  64. Chadda H, Shahar PS, Satapathy BK, Ray AR (2016) Filler-immobilization assisted designing of hydroxyapatite and silica/ hydroxyapatite filled acrylate based dental restorative composites: comparative evaluation of quasi-static and dynamic mechanical properties. J Polym Res 23:197

    Google Scholar 

  65. Arjmandia R, Hassan A, Mohamad Haafiz MK, Zakaria Z (2015) Partial replacement effect ofmontmorillonite with cellulose nanowhiskers on polylactic acidnanocomposites. Int J Biol Macromol 81:91–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo-Tueen Bee or Lee Tin Sin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, H.M., Bee, ST., Sin, L.T. et al. Interaction Effect of Scomberomorus Guttatus-Derived Hydroxyapatite and Montmorillonite on the Characteristics of Polylactic Acid Blends for Biomedical Application. J Polym Res 27, 215 (2020). https://doi.org/10.1007/s10965-020-02138-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02138-w

Keywords

Navigation