Skip to main content
Log in

On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We answer three fundamental questions concerning monostable traveling fronts for the scalar Kolmogorov ecological equation with diffusion and spatiotemporal interaction: These are the questions about their existence, uniqueness and geometric shape. In the particular case of the food-limited model, we give a rigorous proof of the existence of a peculiar, yet substantive and nonlinearly determined class of non-monotone and non-oscillating wavefronts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguerrea, M., Trofimchuk, S., Valenzuela, G.: Uniqueness of fast travelling fronts in reaction-diffusion equations with delay. Proc. R. Soc. Lond. Ser. A 464, 2591–2608 (2008)

    MathSciNet  MATH  Google Scholar 

  • Aguerrea, M., Gomez, C., Trofimchuk, S.: On uniqueness of semi-wavefronts (Diekmann–Kaper theory of a nonlinear convolution equation re-visited). Math. Ann. 354, 73–109 (2012)

    MathSciNet  MATH  Google Scholar 

  • Alfaro, M., Coville, J.: Rapid traveling waves in the nonlocal Fisher equation connect two unstable states. Appl. Math. Lett. 25, 2095–2099 (2012)

    MathSciNet  MATH  Google Scholar 

  • Ashwin, P., Bartuccelli, M.V., Bridges, T.J., Gourley, S.A.: Travelling fronts for the KPP equation with spatio-temporal delay. Z. Angew. Math. Phys. 53, 103–122 (2002)

    MathSciNet  MATH  Google Scholar 

  • Bani-Yaghoub, M., Amundsen, D.E.: Oscillatory traveling waves for a population diffusion model with two age classes and nonlocality induced by maturation delay. Comput. Appl. Math. 34, 309–324 (2015)

    MathSciNet  MATH  Google Scholar 

  • Bani-Yaghoub, M., Yao, G.-M., Fujiwara, M., Amundsen, D.E.: Understanding the interplay between density dependent birth function and maturation time delay using a reaction-diffusion population model. Ecol. Complex. 21, 14–26 (2015)

    Google Scholar 

  • Benguria, R., Solar, A.: An iterative estimation for disturbances of semi-wavefronts to the delayed Fisher-KPP equation. Proc. Amer. Math. Soc. 147, 2495–2501 (2019a)

    MathSciNet  MATH  Google Scholar 

  • Benguria, R., Solar, A.: An estimation of level sets for non local KPP equations with delay. Nonlinearity 32, 777–799 (2019b)

    MathSciNet  MATH  Google Scholar 

  • Berestycki, H., Nadin, G., Perthame, B., Ryzhik, L.: The non-local Fisher-KPP equation: travelling waves and steady states. Nonlinearity 22, 2813–2844 (2009)

    MathSciNet  MATH  Google Scholar 

  • Bocharov, G., Meyerhans, A., Bessonov, N., Trofimchuk, S., Volpert, V.: Spatiotemporal dynamics of virus infection spreading in tissues. PLoS ONE 11(12), e0168576 (2016). https://doi.org/10.1371/journal.pone.0168576

    Article  Google Scholar 

  • Canosa, J.: On a nonlinear diffusion equation describing population growth. IBM J. Res. Dev. 17, 307–313 (1973)

    MathSciNet  MATH  Google Scholar 

  • Cao, Y.: The discrete Lyapunov function for scalar differential delay equations. J. Differ. Equ. 87, 365–390 (1990)

    MathSciNet  MATH  Google Scholar 

  • Ducrot, A., Nadin, G.: Asymptotic behaviour of traveling waves for the delayed Fisher-KPP equation. J. Differ. Equ. 256, 3115–3140 (2014)

    MATH  Google Scholar 

  • Elkhader, A.S.: A result on a feedback system of ordinary differential equations. J. Dyn. Differ. Equ. 4, 399–418 (1992)

    MathSciNet  MATH  Google Scholar 

  • Fang, J., Zhao, X.-Q.: Monotone wavefronts of the nonlocal Fisher-KPP equation. Nonlinearity 24, 3043–3054 (2011)

    MathSciNet  MATH  Google Scholar 

  • Faria, T., Trofimchuk, S.: Positive traveling fronts for reaction–diffusion systems with distributed delay. Nonlinearity 23, 2457–2481 (2010)

    MathSciNet  MATH  Google Scholar 

  • Faria, T., Huang, W., Wu, J.: Traveling waves for delayed reaction-diffusion equations with non-local response. Proc. R. Soc. A 462, 229–261 (2006)

    MATH  Google Scholar 

  • Gilbarg, G., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer, Berlin (2001)

    MATH  Google Scholar 

  • Gomez, A., Trofimchuk, S.: Monotone traveling wavefronts of the KPP-Fisher delayed equation. J. Differ. Equ. 250, 1767–1787 (2011)

    MathSciNet  MATH  Google Scholar 

  • Gomez, A., Trofimchuk, S.: Global continuation of monotone wavefronts. J. Lond. Math. Soc. 89, 47–68 (2014)

    MathSciNet  MATH  Google Scholar 

  • Gopalsamy, K., Ladas, G.: On the oscillation and asymptotic behavior of \(N^{\prime }(t) = N(t)(a + bN(t -\tau ) - cN^2(t - \tau ))\). Quart. Appl. Math. 48, 433–440 (1990)

    MathSciNet  MATH  Google Scholar 

  • Gourley, S.: Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. 41, 272–284 (2000)

    MathSciNet  MATH  Google Scholar 

  • Gourley, S.A.: Wave front solutions of a diffusive delay model for populations of Daphnia magna. Comput. Math. Appl. 42, 1421–1430 (2001)

    MathSciNet  MATH  Google Scholar 

  • Gourley, S.A., Chaplain, M.A.J.: Traveling fronts in a food-limited population model with time delay. Proc. R. Soc. Edinb. Sect. A 132, 75–89 (2002)

    MATH  Google Scholar 

  • Gourley, S.A., So, J.W.-H.: Dynamics of a food-limited population mode incorporating nonlocal delays on a finite domain. J. Math. Biol. 44, 49–78 (2002)

    MathSciNet  MATH  Google Scholar 

  • Han, B.-S., Wang, Z.-C., Feng, Z.: Traveling waves for the nonlocal diffusive single species model with Allee effect. J. Math. Anal. Appl. 443, 243–264 (2016)

    MathSciNet  MATH  Google Scholar 

  • Hasík, K., Kopfová, J., Nábělková, P., Trofimchuk, S.: On the geometric diversity of wavefronts for the scalar Kolmogorov ecological equation. arXiv:1903.10339v1

  • Hasík, K., Trofimchuk, S.: Slowly oscillating wavefronts of the KPP-Fisher delayed equation. Discrete Contin. Dyn. Syst. 34, 3511–3533 (2014)

    MathSciNet  MATH  Google Scholar 

  • Hasík, K., Trofimchuk, S.: An extension of Wright’s 3/2-theorem for the KPP-Fisher delayed equation. Proc. Am. Math. Soc. 143, 3019–3027 (2015)

    MathSciNet  MATH  Google Scholar 

  • Hasík, K., Kopfová, J., Nábělková, P., Trofimchuk, S.: Traveling waves in the nonlocal KPP-Fisher equation: different roles of the right and the left interactions. J. Differ. Equ. 261, 1203–1236 (2016)

    MathSciNet  MATH  Google Scholar 

  • Hernández, E., Trofimchuk, S.: Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation. J. Dyn. Differ. Equ. 32, 921–939 (2020)

    MathSciNet  MATH  Google Scholar 

  • Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York (1974)

    MATH  Google Scholar 

  • Huang, R., Jin, C., Mei, M., Yin, J.: Existence and stability of traveling waves for degenerate reaction-diffusion equation with time delay. J. Nonlinear Sci. 28, 1011–1042 (2018)

    MathSciNet  MATH  Google Scholar 

  • Ivanov, A., Gomez, C., Trofimchuk, S.: On the existence of non-monotone non-oscillating wavefronts. J. Math. Anal. Appl. 419, 606–616 (2014)

    MathSciNet  MATH  Google Scholar 

  • Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, New York (2003)

    Google Scholar 

  • Lewis, M., Li, B., Weinberger, H.: Spreading speed and linear determinacy for two-species competition models. J. Math. Biol. 45, 219–233 (2002)

    MathSciNet  MATH  Google Scholar 

  • Li, W.T., Ruan, S.G., Wang, Z.C.: On the diffusive Nicholson’s blowflies equation with nonlocal delays. J. Nonlinear Sci. 17, 505–525 (2007)

    MathSciNet  MATH  Google Scholar 

  • Liang, D., Wu, J.: Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects. J. Nonlinear Sci. 13, 289–310 (2003)

    MathSciNet  MATH  Google Scholar 

  • Lin, C.-K., Lin, C.-T., Lin, Y., Mei, M.: Exponential stability of nonmonotone traveling waves for Nicholson’s blowflies equation. SIAM J. Math. Anal. 46, 1053–1084 (2014)

    MathSciNet  MATH  Google Scholar 

  • Liz, E., Pinto, M., Robledo, G., Tkachenko, V., Trofimchuk, S.: Wright type delay differential equations with negative Schwarzian. Discrete Contin. Dyn. Syst. 9, 309–321 (2003)

    MathSciNet  MATH  Google Scholar 

  • Mallet-Paret, J.: Morse decompositions for differential delay equations. J. Differ. Equ. 72, 270–315 (1988)

    MATH  Google Scholar 

  • Mallet-Paret, J., Sell, G.: Systems of delay differential equations I: Floquet multipliers and discrete Lyapunov functions. J. Differ. Equ. 125, 385–440 (1996a)

    MATH  Google Scholar 

  • Mallet-Paret, J., Sell, G.: The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay. J. Differ. Equ. 125, 441–489 (1996b)

    MATH  Google Scholar 

  • Mallet-Paret, J., Sell, G.: Differential systems with feedback: time discretizations and Lyapunov functions. J. Dyn. Differ. Equ. 15, 659–697 (2003)

    MathSciNet  MATH  Google Scholar 

  • Mallet-Paret, J., Smith, H.L.: The Poincaré–Bendixson theorem for monotone cyclic feedback systems. J. Dyn. Differ. Equ. 2, 367–421 (1990)

    MATH  Google Scholar 

  • Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)

    MATH  Google Scholar 

  • Ou, C., Wu, J.: Traveling wavefronts in a delayed food-limited population model. SIAM J. Math. Anal. 39, 103–125 (2007)

    MathSciNet  MATH  Google Scholar 

  • Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, Berlin (2001)

    MATH  Google Scholar 

  • Ruan, S.: Delay differential equations in single species dynamics, In: Arino, O., Hbid, M., Ait Dads E. (eds.), Delay Differential Equations with Applications, NATO Science Series II Mathematics Physics and Chemistry, vol. 205, Springer, Berlin, pp. 477–517 (2006)

  • Smith, F.E.: Population dynamics in Daphnia magna. Ecology 44, 651–663 (1963)

    Google Scholar 

  • Smith, H.L.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, Berlin (2011)

    MATH  Google Scholar 

  • So, J.W.-H., Wu, J., Zou, X.: A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains. Proc. R. Soc. Lond. Ser. A 457, 1841–1853 (2001)

    MathSciNet  MATH  Google Scholar 

  • Solar, A., Trofimchuk, S.: A simple approach to the wave uniqueness problem. J. Differ. Equ. 266, 6647–6660 (2019)

    MathSciNet  MATH  Google Scholar 

  • Song, Y., Peng, Y., Han, M.: Traveling wavefronts in the diffusive single species model with Allee effect and distributed delay. Appl. Math. Comput. 152, 483–497 (2004)

    MathSciNet  MATH  Google Scholar 

  • Trofimchuk, E., Pinto, M., Trofimchuk, S.: Existence and uniqueness of monotone wavefronts in a nonlocal resource-limited model. Proc. R. Soc. Edinb. Sect. A (2019). https://doi.org/10.1017/prm.2019.31

  • Trofimchuk, E., Alvarado, P., Trofimchuk, S.: On the geometry of wave solutions of a delayed reaction–diffusion equation. J. Differ. Equ. 246, 1422–1444 (2009)

    MathSciNet  MATH  Google Scholar 

  • Trofimchuk, E., Pinto, M., Trofimchuk, S.: Monotone waves for non-monotone and non-local monostable reaction–diffusion equations. J. Differ. Equ. 261, 1203–1236 (2016)

    MathSciNet  MATH  Google Scholar 

  • Wang, Z.C., Li, W.T.: Monotone travelling fronts of a food-limited population model with nonlocal delay. Nonlinear Anal. Real World Appl. 8, 699–712 (2007)

    MathSciNet  MATH  Google Scholar 

  • Wei, J., Tian, L., Zhou, J., Zhen, Z., Xu, J.: Existence and asymptotic behavior of traveling wave fronts for a food-limited population model with spatio-temporal delay. Jpn. J. Indust. Appl. Math. 34, 305–320 (2017)

    MathSciNet  MATH  Google Scholar 

  • Wong, J.S.W.: Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients. Trans. Am. Math. Soc. 144, 197–215 (1969)

    MathSciNet  MATH  Google Scholar 

  • Wu, J., Zou, X.: Traveling wave fronts of reaction–diffusion systems with delay. J. Dyn. Differ. Equ. 13, 651–687 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Zuzana Chladná for her computational and graphical work some of which is used in this paper. This work was realized during a research stay of Sergei Trofimchuk at the Silesian University in Opava, Czech Republic. This stay was possible due to the support of the Silesian University in Opava and of the European Union through the project CZ.02.2.69/0.0/0.0/16_027/0008521. S. Trofimchuk was also partially supported by FONDECYT (Chile), project 1190712. The work of Karel Hasík, Jana Kopfová and Petra Nábělková was supported by the institutional support for the development of research organizations IČO 47813059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Trofimchuk.

Additional information

Communicated by Anthony Bloch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Theorem 29 follows from Faria and Trofimchuk (2010, Theorems 2.1, 3.8, 4.3; Corollaries 3.9, 3.11). To state this result, we first introduce some notation. For \(d=(d_1,\dots ,d_N)\in \mathbb {R}^N\), we say that \(d>0\) (respectively, \(d\ge 0\)) if \(d_i>0\) (respectively \(d_i\ge 0\)) for \(i=1,\dots ,N\). In the Banach space \(\mathcal{C}=C([-\tau ,0];\mathbb {R}^N)\), we consider the partial orders \(\ge ,\) resp. \(>,\) defined as follows: \(\phi \ge \psi \) if and only if \(\phi (\theta )- \psi (\theta )\ge 0\) for \(\theta \in [-\tau ,0]\); in an analogous way, \(\phi >\psi \) if \(\phi (\theta )- \psi (\theta )> 0\) for \(\theta \in [-\tau ,0]\). Next, \(\mathcal{C}_+\) denotes the positive cone \(C([-\tau ,0];[0,\infty )^N)\).

We also will need the following Banach spaces:

\(C_0=\{ y\in C_b:\lim _{s\rightarrow \pm \infty }y(s)=0\}\) is considered as a subspace of \(C_b\);

\(C_\mu =\{ y\in C_b:\sup _{s\le 0}e^{-\mu s}|y(s)|<\infty \}\) (for \(\mu >0\)) with the norm

$$\begin{aligned} \Vert y\Vert _\mu =\max \{\Vert y\Vert _\infty ,\Vert y\Vert _{\mu }^- \}\quad \mathrm{where} \quad \Vert y\Vert _\mu ^-=\sup _{s\le 0}e^{-\mu s}|y(s)|. \end{aligned}$$

The space \(C_{\mu ,0}=C_{\mu }\cap C_0\) will be considered as a subspace of \(C_\mu \).

We will analyze singular perturbations of the heteroclinic connection in the system of functional differential equations

$$\begin{aligned} u'(t)=f(u_t),\quad t\in \mathbb {R}, \end{aligned}$$
(52)

where f is such that

(H1):

\(f(0)=f(\kappa )=0\), where \(\kappa \) is some positive vector;

(H2):

(i) f is \(C^2\)-smooth; furthermore, (ii) for every \(M>0\), there is \(\beta >0\) such that \(f_i(\varphi )+\beta \varphi _i(0)\ge 0,\) \( i=1,\dots ,N\), for all \(\varphi \in \mathcal{C}\) with \(0\le \varphi \le M\);

(H3):

for Eq. (52), the equilibrium \(u=\kappa \) is locally asymptotically stable and globally attractive in the set of solutions of (1.2) with the initial conditions \(\varphi \in \mathcal{C}_+,\varphi (0)> 0\);

(H4):

for Eq. (52), its linearized equation about the equilibrium 0 has a real characteristic root \(\lambda _0>0\), which is simple and dominant (i.e., \(\mathfrak {R}\, z<\lambda _0\) for all other characteristic roots z); moreover, there is a characteristic eigenvector \(\mathbf{v}>0\) associated with \(\lambda _0\).

Then, the following holds.

Theorem 29

Faria and Trofimchuk (2010) Assuming (H1)–(H4), then Eq. (52) has a positive heteroclinic solution \(u^*(t)\): \(u^*(-\,\infty )=0, \ u^*(+\,\infty )=\kappa \). Next, denote by \(\sigma (A)\) the set of characteristic values for

$$\begin{aligned} u'(t)=Lu_t,\quad \mathrm{where}\quad L=Df(0). \end{aligned}$$

Let positive \(\mu <\lambda _0 \) be such that the strip \(\{ \lambda \in \mathbb {C}: \mathfrak {R}\, \lambda \in (\mu , \lambda _0)\}\) does not intersect \(\sigma (A)\). Then, there exists a direct sum representation

$$\begin{aligned} C_{\mu ,0}=X_\mu \oplus Y_\mu , \quad \text{ where } \ X_\mu , Y_\mu \ \text{ are } \text{ subspaces } \text{ of } \ C_{\mu ,0}, \ \ \dim X_\mu =1, \end{aligned}$$

and \(\varepsilon ^*>0\), \(\sigma >0\), such that for \(0<\varepsilon \le \varepsilon ^*\), the following holds: For each unit vector \(w\in \mathbb {R}^p\), in a neighbourhood \(B_\sigma (0)\) of \(u^*(t)\) in \(C_\mu \), the set of all wavefronts \(u(t,x)=\psi (ct+w\cdot x)\) of

$$\begin{aligned} {{\partial u}\over {\partial t}}(t,x)=\Delta u(t,x)+f(u_t(\cdot ,x)),\quad t\in \mathbb {R},\ x\in \mathbb {R}^p. \end{aligned}$$

with speed \(c=1/\varepsilon \) and connecting 0 to \(\kappa \) forms a one-dimensional manifold (which does not depend on the choice of \(\mu \)), with the profiles

$$\begin{aligned} \psi (\varepsilon , \xi ) =u^*+\xi +\phi (\varepsilon , \xi ),\quad \xi \in X_\mu \cap B_\sigma (0), \end{aligned}$$

where \(\phi (\varepsilon , \xi ) \in Y_\mu \cap B_\sigma (0)\) is continuous in \((\varepsilon ,\xi )\). Next, the profile \(\psi (\varepsilon ,0)\) is positive and satisfies \( \psi (\varepsilon ,0)\rightarrow u^*\ \mathrm{in} \ C_\mu \) as \(\varepsilon \rightarrow 0^+ \). Moreover, the components of the profile \(\psi (\varepsilon , 0)\) are increasing in the vicinity of \(-\,\infty \) and \(\psi (\varepsilon ,0)(t)=O(e^{\lambda (\varepsilon )t}),\) \( \psi '(\varepsilon ,0)(t)=O(e^{\lambda (\varepsilon )t})\) at \(-\,\infty \), where \(\varepsilon =1/c\) and \(\lambda (\varepsilon )\) is the real solution of

$$\begin{aligned} \det \Delta _\varepsilon (z)=0,\quad \mathrm{}\quad \Delta _\varepsilon (z):=\varepsilon ^2 z^2I-zI+L(e^{z\cdot }I), \end{aligned}$$

where \(L=Df(0)\), with \(\lambda (\varepsilon )\rightarrow \lambda _0\) as \(\varepsilon \rightarrow 0^+\).

Remark 30

In fact, after a slight modification of the proof of Theorem 3.8 in Faria and Trofimchuk (2010), one can note that the conclusions of Theorem 29 remain valid if we replace the space \(C_{\mu ,0}\) with \(C_{\mu ,\delta }=\{ y\in C_b:\Vert y\Vert _{\mu ,\delta } <\infty \}\) for small \(\delta \in (0,\mu )\) and with the norm

$$\begin{aligned} \Vert y\Vert _{\mu ,\delta } =\max \{\Vert y\Vert _\delta ^+,\Vert y\Vert _{\mu }^- \}\quad \mathrm{where} \quad \Vert y\Vert _\mu ^-=\sup _{s\le 0}e^{-\mu s}|y(s)|, \ \Vert y\Vert _\delta ^+=\sup _{s\ge 0}e^{\delta s}|y(s)|. \end{aligned}$$

To see this, it suffices to use the change of variables \(\phi (t) = u^*(t)+ e^{-\delta t}w(t)\) instead of \(\phi (t) = u^*(t)+ w(t)\) before formula (3.3) in Faria and Trofimchuk (2010). As a consequence of this observation, there exist small \(\epsilon _0 >0\) and some constant \(C>0\) which does not depend on \(\epsilon \) such that \(|\psi (\varepsilon ,0)(t) -\kappa | \le Ce^{-\delta t}\), \(t\ge 0\), \(\epsilon \in [0,\epsilon _0]\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasík, K., Kopfová, J., Nábělková, P. et al. On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation . J Nonlinear Sci 30, 2989–3026 (2020). https://doi.org/10.1007/s00332-020-09642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-020-09642-9

Keywords

Mathematics Subject Classification

Navigation