Skip to main content
Log in

Sauchinone: a prospective therapeutic agent-mediated EIF4EBP1 down-regulation suppresses proliferation, invasion and migration of lung adenocarcinoma cells

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Lung adenocarcinoma (LUAD) is the top prevalent histological kind of lung cancer worldwide. Recent evidences have demonstrated that Sauchinone plays an anticancer role in tumor cell invasion and migration. Therefore, we performed this investigation to explain the potential role of Sauchinone in LUAD as well as the potential mechanism involved. Cell counting kit 8 (CCK-8) and transwell experiments were implemented to measure the proliferative, invasive and migratory abilities of LUAD cells. qRT-PCR and Western blot were performed to detect the transfection efficiency of si-EIF4EBP1s. Additionally, Western blot was also implemented to evaluate the effect of Sauchinone on EIF4EBP1 expression level as well as cell cycle-related proteins. Our findings showed that Sauchinone remarkably suppressed the proliferative ability of LUAD cells in a dose-dependent and time-dependent manner. EIF4EBP1 was a candidate target gene of Sauchinone. EIF4EBP1 expression was increased in LUAD tissues, and its high expression induced a poorer prognosis of LUAD patients. EIF4EBP1 expression was positively associated with cell cycle in LUAD. Sauchinone treatment attenuated EIF4EBP1 expression and cell cycle-related protein levels. Knockdown of EIF4EBP1 repressed the proliferation, invasion and migration of LUAD cells; furthermore, Sauchinone stimulation enforced its inhibitory effect. Meanwhile, the treatment of Sauchinone intensified the arrest of cell cycle induced by EIF4EBP1 knockdown. To sum up, our discovery indicated that Sauchinone exerts an anticancer role through down-regulating EIF4EBP1 and mediating cell cycle in LUAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Figure. 5
Figure. 6

Similar content being viewed by others

References

  1. Senosain MF, Massion PP (2020) Intratumor heterogeneity in early lung adenocarcinoma. Front Oncol 10:349. https://doi.org/10.3389/fonc.2020.00349

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ruiz-Cordero R, Devine WP (2020) Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin 13(1):17–33. https://doi.org/10.1016/j.path.2019.11.002

    Article  PubMed  Google Scholar 

  3. Zhang H, Guo L, Chen J (2020) Rationale for lung adenocarcinoma prevention and drug development based on molecular biology during carcinogenesis. OncoTargets Ther 13:3085–3091. https://doi.org/10.2147/ott.s248436

    Article  Google Scholar 

  4. Zappa C, Mousa SA (2016) Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 5(3):288–300. https://doi.org/10.21037/tlcr.2016.06.07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu Y, Ma J, Li Y, Huang J, Zhang S, Yin Z et al (2017) CDP138 silencing inhibits TGF-beta/Smad signaling to impair radioresistance and metastasis via GDF15 in lung cancer. Cell Death Dis 8(9):e3036. https://doi.org/10.1038/cddis.2017.434

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J et al (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346(2):92–98. https://doi.org/10.1056/NEJMoa011954

    Article  CAS  PubMed  Google Scholar 

  7. Hu Y, Wang J (2019) Interactions between clopidogrel and traditional Chinese medicine. J Thromb Thrombolysis 48(3):491–499. https://doi.org/10.1007/s11239-019-01945-3

    Article  CAS  PubMed  Google Scholar 

  8. Ko EY, Moon A (2015) Natural products for chemoprevention of breast cancer. J Cancer Prev 20(4):223–231. https://doi.org/10.15430/jcp.2015.20.4.223

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xiao J, Wang J, Chen Y, Zhou Z, Gao C, Guo Z (2020) Sauchinone ameliorates intestinal inflammation and promotes Th17 cell production of IL-10 via Blimp-1. Biochem Biophys Res Commun 522(2):435–441. https://doi.org/10.1016/j.bbrc.2019.11.122

    Article  CAS  PubMed  Google Scholar 

  10. Bae HB, Li M, Son JK, Seo CS, Chung SH, Kim SJ et al (2010) Sauchinone, a lignan from Saururus chinensis, reduces tumor necrosis factor-alpha production through the inhibition of c-raf/MEK1/2/ERK 1/2 pathway activation. Int Immunopharmacol 10(9):1022–1028. https://doi.org/10.1016/j.intimp.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  11. Gao Y, Zhao H, Li Y (2018) Sauchinone prevents IL-1β-induced inflammatory response in human chondrocytes. J Biochem Mol Toxicol 32(3):e22033. https://doi.org/10.1002/jbt.22033

    Article  CAS  PubMed  Google Scholar 

  12. Kim HY, Choi TW, Kim HJ, Kim SM, Park KR, Jang HJ et al (2011) A methylene chloride fraction of Saururus chinensis induces apoptosis through the activation of caspase-3 in prostate and breast cancer cells. Phytomedicine Int J Phytother Phytopharmacol 18(7):567–574. https://doi.org/10.1016/j.phymed.2010.10.013

    Article  Google Scholar 

  13. He Z, Dong W, Li Q, Qin C, Li Y (2018) Sauchinone prevents TGF-β-induced EMT and metastasis in gastric cancer cells. Biomed Pharmacother 101:355–361. https://doi.org/10.1016/j.biopha.2018.02.121

    Article  CAS  PubMed  Google Scholar 

  14. Soma H, Yabe I, Takei A, Fujiki N, Yanagihara T, Sasaki H (2008) Associations between multiple system atrophy and polymorphisms of SLC1A4, SQSTM1, and EIF4EBP1 genes. Mov Disord 23(8):1161–1167. https://doi.org/10.1002/mds.22046

    Article  PubMed  Google Scholar 

  15. Kim YY, Von Weymarn L, Larsson O, Fan D, Underwood JM, Peterson MS et al (2009) Eukaryotic initiation factor 4E binding protein family of proteins: sentinels at a translational control checkpoint in lung tumor defense. Can Res 69(21):8455–8462. https://doi.org/10.1158/0008-5472.can-09-1923

    Article  CAS  Google Scholar 

  16. Musa J, Orth MF, Dallmayer M, Baldauf M, Pardo C, Rotblat B et al (2016) Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene 35(36):4675–4688. https://doi.org/10.1038/onc.2015.515

    Article  CAS  PubMed  Google Scholar 

  17. Karlsson E, Pérez-Tenorio G, Amin R, Bostner J, Skoog L, Fornander T et al (2013) The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: a retrospective study including patients from the randomised Stockholm tamoxifen trials. Breast Cancer Res BCR 15(5):R96. https://doi.org/10.1186/bcr3557

    Article  PubMed  Google Scholar 

  18. Karlsson E, Waltersson MA, Bostner J, Pérez-Tenorio G, Olsson B, Hallbeck AL et al (2011) High-resolution genomic analysis of the 11q13 amplicon in breast cancers identifies synergy with 8p12 amplification, involving the mTOR targets S6K2 and 4EBP1. Genes Chromosom Cancer 50(10):775–787. https://doi.org/10.1002/gcc.20900

    Article  CAS  PubMed  Google Scholar 

  19. Zhu J, Wang M, Hu D (2020) Development of an autophagy-related gene prognostic signature in lung adenocarcinoma and lung squamous cell carcinoma. PeerJ 8:e8288. https://doi.org/10.7717/peerj.8288

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim YW, Lee SM, Shin SM, Hwang SJ, Brooks JS, Kang HE et al (2009) Efficacy of sauchinone as a novel AMPK-activating lignan for preventing iron-induced oxidative stress and liver injury. Free Radic Biol Med 47(7):1082–1092. https://doi.org/10.1016/j.freeradbiomed.2009.07.018

    Article  CAS  PubMed  Google Scholar 

  21. Kim YW, Jang EJ, Kim CH, Lee JH (2017) Sauchinone exerts anticancer effects by targeting AMPK signaling in hepatocellular carcinoma cells. Chem Biol Interact 261:108–117. https://doi.org/10.1016/j.cbi.2016.11.016

    Article  CAS  PubMed  Google Scholar 

  22. Gong QZ, Xiao D, Feng F, Wen XD, Qu W (2018) ent-Sauchinone as potential anticancer agent inhibiting migration and invasion of human liver cancer cells via suppressing the STAT3 signaling pathway. Chem Biodivers 15(4):e1800024. https://doi.org/10.1002/cbdv.201800024

    Article  CAS  PubMed  Google Scholar 

  23. Lee HW, Lee EH, Lee JH, Kim JE, Kim SH, Kim TG et al (2015) Prognostic significance of phosphorylated 4E-binding protein 1 in non-small cell lung cancer. Int J Clin Exper Pathol 8(4):3955–3962

    CAS  Google Scholar 

  24. Wang Z, Feng X, Molinolo AA (2019) 4E-BP1 Is a tumor suppressor protein reactivated by mTOR inhibition in head and neck cancer. Cancer Res 79(7):1438–1450. https://doi.org/10.1158/0008-5472.can-18-1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vo DT, Karanam NK, Ding L, Saha D, Yordy JS, Giri U et al (2019) miR-125a-5p Functions as tumor suppressor microrna and is a marker of locoregional recurrence and poor prognosis in head and neck cancer. Neoplasia (New York, NY) 21(9):849–862. https://doi.org/10.1016/j.neo.2019.06.004

    Article  CAS  Google Scholar 

  26. Sava GP, Fan H, Coombes RC, Buluwela L, Ali S (2020) CDK7 inhibitors as anticancer drugs. Cancer Metastas Rev. https://doi.org/10.1007/s10555-020-09885-8

    Article  Google Scholar 

  27. Hu H, Xu H, Lu F, Zhang J, Xu L, Xu S et al (2020) Exosome-derived miR-486-5p regulates cell cycle, proliferation and metastasis in lung adenocarcinoma via targeting NEK2. Front Bioeng Biotechnol 8:259. https://doi.org/10.3389/fbioe.2020.00259

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zheng C, Li X, Ren Y, Yin Z, Zhou B (2019) Long noncoding RNA RAET1K enhances CCNE1 expression and cell cycle arrest of lung adenocarcinoma cell by sponging miRNA-135a-5p. Front Genet 10:1348. https://doi.org/10.3389/fgene.2019.01348

    Article  PubMed  Google Scholar 

  29. Li JP, Yang YX, Liu QL, Pan ST, He ZX, Zhang X et al (2015) The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells. Drug Des Dev Ther 9:1627–1652. https://doi.org/10.2147/dddt.s75378

    Article  CAS  Google Scholar 

  30. Gentric G, Maillet V, Paradis V, Couton D, L'Hermitte A, Panasyuk G et al (2015) Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease. J Clin Investig 125(3):981–992. https://doi.org/10.1172/jci73957

    Article  PubMed  Google Scholar 

  31. Wang J, Wu A, Xu Y, Liu J, Qian X (2009) M(2)-A induces apoptosis and G(2)-M arrest via inhibiting PI3K/Akt pathway in HL60 cells. Cancer Lett 283(2):193–202. https://doi.org/10.1016/j.canlet.2009.03.039

    Article  CAS  PubMed  Google Scholar 

  32. Canaud G, Bonventre JV (2015) Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Trans 30(4):575–583. https://doi.org/10.1093/ndt/gfu230

    Article  CAS  Google Scholar 

  33. Nakajima K, Crisma AR, Silva GB, Rogero MM, Fock RA, Borelli P (2014) Malnutrition suppresses cell cycle progression of hematopoietic progenitor cells in mice via cyclin D1 down-regulation. Nutrition (Burbank, Los Angeles County, Calif) 30(1):82–89. https://doi.org/10.1016/j.nut.2013.05.029

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Science and Technology Program of Sichuan Province in 2018 (No.:2018JY0415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SQ., Feng, J., Yang, M. et al. Sauchinone: a prospective therapeutic agent-mediated EIF4EBP1 down-regulation suppresses proliferation, invasion and migration of lung adenocarcinoma cells. J Nat Med 74, 777–787 (2020). https://doi.org/10.1007/s11418-020-01435-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-020-01435-4

Keywords

Navigation