Skip to main content

Advertisement

Log in

Spectral-Kinetic Properties and Energy Transfer in Nanoparticles of Y0.5–xCe0.5TbxF3 Solid Solution

  • Published:
Journal of Applied Spectroscopy Aims and scope

Crystalline nanoparticles of Y0.5–xCe0.5TbxF3, doped with various concentrations (x = 0, 0.005, 0.01, 0.05, 0.1, 0.15, and 0.2) of Tb3+ ions were synthesized by co-precipitation. The crystal structure and chemical composition of nanoparticles were studied using transmission electron microscopy, scanning electron microscopy, and X-ray diffractometry. The obtained nanoparticles of solid solutions had an elliptical shape with a size of 10–15 nm along the long axis and good crystallinity with the structure of a CeF3 crystal. The spectral-kinetic properties of the obtained nanoparticles, and the effect of the concentration of Tb3+ activator ions on the energy transfer from Ce3+ to Tb3+ ions were investigated. Energy transfer from Ce3+ to Tb3+ ions in nanocrystals of the Y0.5–xCe0.5TbxF3 solid solutions occurs mainly through the dipole–dipole interaction. The results of evaluating the efficiency of energy transfer from Ce3+ to Tb3+ ions show its increase with increasing concentration of Tb3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Raymond B. King, Stephen J. McMahon, Wendy B. Hyland, Suneil Jain, Karl T. Butterworth, Kevin M. Prise, Alan R. Hounsell, and Conor K. McGarry, Cancer Nanotechnol., 8, No. 1, 3 (2017).

  2. Wei Chen and Jun Zhang, J. Nanosci. Nanotechnol., 6, No. 4, 1159–1166 (2006).

    Article  Google Scholar 

  3. Daniel R. Cooper, John A. Capobianco, and Jan Seuntjens, Nanoscale, 10, No. 16, 7821–7832 (2018).

    Article  Google Scholar 

  4. K.Popovich, L. Procházková, I. T. Pelikánová, M. Vlk, M. Palkovský, V. Jarý, M. Nikl, V. Múčka, E. Mihóková, and V. Čuba, Radiat. Meas., 90, 325–328 (2016).

    Article  Google Scholar 

  5. Sandhya Clement, Wei Deng, Elizabeth Camilleri, Brian C. Wilson, and Ewa M. Goldys, Sci. Rep., 6, 19954 (2016).

    Article  ADS  Google Scholar 

  6. Miao Wang, Yujun Shi, Guoqing Jiang, and Yanfeng Tang, Mater. Lett., 65, No. 12, 1945–1948 (2011).

    Article  Google Scholar 

  7. Anees A. Ansari and M. Aslam Manthrammel, J. Inorg. Organometal. Polym. Mater., 27, No. 1, 194–200 (2017).

    Article  Google Scholar 

  8. Laércio Gomes, Horácio Marconi da Silva MD Linhares, Rodrigo Uchida Ichikawa, Luis Gallego Martinez, and Sonia Licia Baldochi, Opt. Mater., 54, 57–66 (2016).

    Article  ADS  Google Scholar 

  9. Wenjuan Huang, Mingye Ding, Hengming Huang, Chenfei Jiang, Yan Song, Yaru Ni, Chunhua Lu, and Zhongzi Xu, Mater. Res. Bull., 48, No. 2, 300–304 (2013).

    Article  Google Scholar 

  10. Anyanee Kamkaew, Feng Chen, Yonghua Zhan, Rebecca L. Majewski, and Weibo Cai, Acs. Nano, 10, No. 4, 3918–3935 (2016).

    Article  Google Scholar 

  11. Alexander B. Shcherbakov, Nadezhda M. Zholobak, Alexander E. Baranchikov, Anastasia V. Ryabova, and Vladimir K. Ivanov, Mater. Sci. Eng. C, 50, 151–159 (2015).

    Article  Google Scholar 

  12. Mykhaylo Yu. Losytskyy, Liliia V. Kuzmenko, Oleksandr B. Shcherbakov, Nikolai F. Gamaleia, Andrii I. Marynin, and Valeriy M. Yashchuk, Nanoscale Res. Lett., 12, No. 1, 294 (2017).

  13. Xiaojie Wang, Tianqi Sheng, Zuoling Fu, Wenhao Li, and Jung Hyun Jeong, Mater. Res. Bull., 48, No. 6, 2143–2148 (2013).

    Article  Google Scholar 

  14. Zhong Sun, Yuebin Li, Xing Zhang, Mingzhen Yao, Lun Ma, and Wei Chen, J. Nanosci. Nanotechnol., 9, No. 11, 6283–6291 (2009).

    Article  Google Scholar 

  15. H. Guo, Appl. Phys. B, 84, Nos. 1–2, 365 (2006).

    Article  ADS  Google Scholar 

  16. M. S. Pudovkin, P. V. Zelenikhin, V. Shtyreva, O. A. Morozov, D. A. Koryakovtseva, V. V. Pavlov, Y. N. Osin, V. G. Evtugyn, A. A. Akhmadeev, A. S. Nizamutdinov, and V. V. Semashko, J. Nanotechnology, 8516498 (2018).

  17. E. M. Alakshin, A. V. Klochkov, E. I. Kondratyeva, S. L. Korableva, A. G. Kiiamov, D. S. Nuzhina, A. A. Stanislavovas, M. S. Tagirov, M. Yu Zakharov, and S. Kodjikian, J. Nanomaterials, 7148307 (2016).

  18. Devesh Bekah, Daniel Cooper, Konstantin Kudinov, Colin Hill, Jan Seuntjens, Stephen Bradforth, and Jay Nadeau, J. Photochem. Photobiol. A: Chem., 329, 26–34 (2016).

  19. Chunxia Li, Xiaoming Liu, Piaoping Yang, Cuimiao Zhang, Hongzhou Lian, and Jun Lin, J. Phys. Chem. C, 112, No. 8, 2904–2910 (2008).

    Article  Google Scholar 

  20. Allan Zalkin and D. H. Templeton, J. Am. Chem. Soc., 75, No. 10, 2453–2458 (1953).

    Article  Google Scholar 

  21. A. J. Wojtowicz, M. Balcerzyk, E. Berman, and A. Lempicki, Phys. Rev. B, 49, No. 21, 14880–14895 (1994).

    Article  ADS  Google Scholar 

  22. Metz, Philip Werner, Daniel-Timo Marzahl, Ahmad Majid, Christian Kränkel, and Günter Huber, Laser Photon. Rev., 10, No. 2, 335–344 (2016).

    Article  ADS  Google Scholar 

  23. Z. L. Wang, Z. W. Quan, P. Y. Jia, C. K. Lin, Y. Luo, Y. Chen, J. Fang, W. Zhou, C. J. O’Connor, and J. Lin, Chem. Mater., 18, 2030–2037 (2006).

    Article  Google Scholar 

  24. Marcin Runowski and Stefan Lis, J. Alloy. Compd., 661, 182–189 (2016).

    Article  Google Scholar 

  25. B. Ya. Sveshnikov and V. V. Shirokov, Opt. Spektrosk., 12, No. 5, 576–581 (1962).

  26. C. Pedrini, B. Moine, D. Bouttet, A. N. Belsky, V. V. Mikhailin, and A. N. Vasil’ev, Chem. Phys. Lett., 206, Nos. 5–6, 470–474 (1993).

    Article  ADS  Google Scholar 

  27. P. Dorenbos and A. J. J. Bos, Radiat. Meas., 43, 139–145 (2008).

    Article  Google Scholar 

  28. V. V. Semashko, M. A. Dubinskii, R. Yu. Abdulsabirov, S. L. Korableva, A. K. Naumov, A. S. Nizamutdinov, and M. S. Zhuchkv, Proc. SPIE, 4766, 119–126 (2002); https://doi.org/10.1117/12.

  29. V. V. Semashko, M. A. Dubinskii, R. Yu. Abdulsabirov, A. K. Naumov, and S. L. Korableva, Conf. Lasers and Electro-Optics EuropeTechnical Digest, No. CPD6 (2001).

  30. Guo Bin, Zhi-Wei Zhang, Da-Guo Jiang, Yu-Nong Li, and Xin-Yuan Sun, J. Lumin., 206, 244–249 (2019).

    Article  Google Scholar 

  31. E. B. Ershov, Prikl. Ekonometrika, No. 4 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Nizamutdinov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 3, pp. 454–461, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizamutdinov, A.S., Madirov, E.I., Lukinova, E.V. et al. Spectral-Kinetic Properties and Energy Transfer in Nanoparticles of Y0.5–xCe0.5TbxF3 Solid Solution. J Appl Spectrosc 87, 481–487 (2020). https://doi.org/10.1007/s10812-020-01027-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01027-w

Keywords

Navigation