Skip to main content
Log in

Fluorescent Probe Derived from 1,8-Naphthalimide-Schiff Base for Copper(Ii) Ion: Synthesis, Characterization, and Application

  • Published:
Journal of Applied Spectroscopy Aims and scope

A novel fluorescent probe, 2-allyl-6-((2-((2-hydroxy-5-nitrobenzylidene)amino)ethyl)amino)-1H-benzo[de]isoquinoline- 1,3(2H)-dione (ABID), based on naphthalimide-Schiff base, has been designed and synthesized for the monitoring of Cu2+ ions. In solution (DMSO/HEPES, 1:1, v/v, pH 7.4), ABID displayed fluorescence quenching towards Cu2+ ions over other important metal ions. A good linearity with a correlation coefficient (R2) of 0.99 validated that the ABID probe could be used to detect Cu2+ ions in 0.5–5.0 μM concentrations. The limit of detection of ABID for Cu2+ could reach at 3.4 × 10–7 M level, and the quenching constant (KSV) of ABID towards Cu2+ was calculated to be 3.4 × 104 M–1. The 2:1 stoichiometry and the binding mode between ABID and Cu2+ were studied by a Job plot and UV-Vis and fluorescence titration. Additionally, ABID was successfully employed to monitor Cu2+ in the Yellow River and tap water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. B. Bojinov, N. I. Georgiev, and P. S. Nikolov, J. Photochem. Photobiol. A, 193, 129–138 (2008).

    Google Scholar 

  2. Y. M. Yang, Q. Zhao, W. Feng, and F. Y. Li, Chem. Rev., 113, 192–270 (2013).

    Google Scholar 

  3. E. Gaggelli, H. Kozlowski, D. Valensin, and G. Valensin, Chem. Rev., 106, 1995–2044 (2006).

    Google Scholar 

  4. G. L. Millhauser, Acc. Chem. Res., 37, 79–85 (2004).

    Google Scholar 

  5. C. Beyer, U. Böhme, C. Pietzsch, and G. Roewer, J. Organomet. Chem., 654, 187–201 (2002).

    Google Scholar 

  6. E. L. Que, D. W. Domaille, and C. J. Chang, Chem. Rev., 108, 1517–1549 (2008).

    Google Scholar 

  7. R. Zhang, X. J. Yu, Y. J. Yin, Z. Q. Ye, G. L. Wang, and J. L. Yuan, Anal. Chim. Acta, 691, 83–88 (2011).

    Google Scholar 

  8. B. Chen and P. Zhong, Anal. Bioanal. Chem., 381, 986–992 (2005).

    Google Scholar 

  9. Y. L. Xu, S. S. Mao, H. P. Peng, F. Wang, H. Zhang, S. O. Aderinto, and H. L. Wu, J. Lumin., 192, 56–63 (2017).

    Google Scholar 

  10. Y. L. Xu, S. O. Aderinto, H. L. Wu, H. P. Peng, H. Zhang, J. W. Zhang, and X. Y. Fan, Z. Naturforsch. B, 72, 35–41 (2017).

    Google Scholar 

  11. S. O. Aderinto, Y. L. Xu, H. P. Peng, F. Wang, H. L. Wu, and X. Y. Fan, J. Fluoresc., 27, 79–87 (2017).

    Google Scholar 

  12. J. H. Hu, J. B. Li, J. Qi, and Y. Sun, Sensor. Actuat. B: Chem., 208, 581–587 (2015).

    Google Scholar 

  13. W. K. Dong, X. L. Li, L. Wang, Y. Zhang, and Y. J. Ding, Sensor. Actuat. B: Chem., 229, 370–378 (2016).

    Google Scholar 

  14. W. K. Dong, S. F. Akogun, Y. Zhang, Y. X. Sun, and X. Y. Dong, Sensor. Actuat. B: Chem., 238, 723–734 (2017).

    Google Scholar 

  15. H. L. Wu, S. O. Aderinto, Y. L. Xu, H. Zhang, and X. Y. Fan, J. Appl. Spectrosc., 84, 25–30 (2017).

    ADS  Google Scholar 

  16. G. Z. Huang, C. Li, X. T. Han, S. O. Aderinto, K. S. Shen, S. S. Mao, and H. L. Wu, Luminescence, 33, 660–669 (2018).

    Google Scholar 

  17. H. P. Peng, K. S. Shen, S. S. Mao, X. K. Shi, Y. L. Xu, S. O. Aderinto, and H. L. Wu, J. Fluoresc., 27, 1191–1200 (2017).

    Google Scholar 

  18. F. Wang, Y. L. Xu, S. O. Aderinto, H. P. Peng, H. Zhang, and H. L. Wu, J. Photochem. Photobiol. A, 332, 273–282 (2017).

    Google Scholar 

  19. K. S. Shen, S. S. Mao, X. K. Shi, F. Wang, Y. L. Xu, S. O. Aderinto, and H. L. Wu, Luminescence, 33, 54–63 (2018).

    Google Scholar 

  20. C. Li, X. T. Han, S. S. Mao, S. O. Aderinto, X. K. Shi, K. S. Shen, and H. L. Wu, Color. Technol., 134, 230–239 (2018).

    Google Scholar 

  21. N. Singh, N. Kaur, B. McCaughan, and J. F. Callan, Tetrahedron Lett., 51, 3385–3387 (2010).

    Google Scholar 

  22. H. L. Wu, C. Y. Chen, H. Zhang, H. P. Peng, F. Wang, Z. H. Yang, and J. W. Zhang, Chem. Pap., 70, 685–694 (2016).

    Google Scholar 

  23. S. O. Aderinto, H. Zhang, H. L. Wu, C. Y. Chen, J. W. Zhang, H. P. Peng, Z. H. Yang, and F. Wang, Color. Technol., 133, 40–49 (2017).

    Google Scholar 

  24. H. L. Wu, H. P. Peng, F. Wang, H. Zhang, C. G. Chen, J. W. Zhang, and Z. H. Yang, J. Appl. Spectrosc., 83, 931–937 (2017).

    ADS  Google Scholar 

  25. X. Q. Song, Y. Q. Peng, G. Q. Cheng, X. R. Wang, P. P. Liu, and W. Y. Xu, Inorg. Chim. Acta, 427, 13–21 (2015).

    Google Scholar 

  26. J. Zhang, Y. Zhang, S. T. Zhang, X. Y. Dong, and W. K. Dong, Asian J. Chem., 27, 654–656 (2015).

    Google Scholar 

  27. W. K. Dong, Y. X. Sun, C. Y. Zhao, X. Y. Dong, and L. Xu, Polyhedron, 29, 2087–2097 (2010).

    Google Scholar 

  28. Y. J. Dong, X. Y. Dong, W. K. Dong, Y. Zhang, and L. S. Zhang, Polyhedron, 123, 305–315 (2017).

    Google Scholar 

  29. W. K. Dong, J. C. Ma, Y. J. Dong, L. Zhao, L. C. Zhu, Y. X. Sun, and Y. Zhang, J. Coord. Chem., 69, 3231–3241 (2016).

    Google Scholar 

  30. J. C. Ma, X. Y. Dong, W. K. Dong, Y. Zhang, L. C. Zhu, and J. T. Zhang. J. Coord. Chem., 69, 149–159 (2016).

    Google Scholar 

  31. W. K. Dong, P. F. Lan, W. M. Zhou, and Y. Zhang, J. Coord. Chem., 69, 1272–1283 (2016).

    Google Scholar 

  32. W. K. Dong, L. C. Zhu, J. C. Ma, Y. X. Sun, and Y. Zhang, Inorg. Chim. Acta, 53, 402–408 (2016).

    Google Scholar 

  33. Y. Gao, Y. Li, X. Yang, F. He, J. Huang, M. Jiang, Z. Zhou, and H. Chen, RSC Adv., 5, 80110–80117 (2015).

    Google Scholar 

  34. Y. Q. Xu, B. H. Li, W. W. Li, J. Zhao, S. G. Sun, and Y. Pang, Chem. Commun., 49, 4764–4766 (2013).

    Google Scholar 

  35. L. Q. Chai, K. H. Mao, J. Y. Zhang, K. Y. Zhang, and H. S. Zhang, Inorg. Chim. Acta, 457, 34–40 (2017).

    Google Scholar 

  36. N. I. Georgiev, V. B. Bojinov, and N. Marinova, Sens. Actuat. B: Chem., 150, 655–666 (2010).

    Google Scholar 

  37. X. Q. Song, P. P. Liu, Y. A. Liu, J. J. Zhou, and X. L. Wang, Dalton Trans., 45, 8154–8163 (2016).

    Google Scholar 

  38. M. H. Lim, B. A. Wong, W. H. Pitcock, Jr., D. Mokshagundam, M. H. Baik, and S. J. Lippard, J. Am. Chem. Soc., 128, 14364–14373 (2006).

    Google Scholar 

  39. N. I. Georgiev and V. B. Bojinov, J. Lumin., 132, 2235–2241 (2012).

    Google Scholar 

  40. S. Roy, P. Gayen, R. Saha, T. K. Mondal, and C. Sinha, Inorg. Chim. Acta, 410, 202–213 (2014).

    Google Scholar 

  41. N. I. Georgiev, A. M. Asiri, A. H. Qusti, K. A. Alamryb, and V. B. Bojinov, Sens. Actuat. B: Chem., 190, 185–198 (2014).

    Google Scholar 

  42. K. A. Alamry, N. I. Georgiev, S. A. EI-Daly, L. A. Taib, and V. B. Bojinov, J. Lumin., 158, 50–59 (2015).

    Google Scholar 

  43. Y. F. Liu, M. Deng, X. S. Tang, T. Zhu, Z. G. Zang, X.F. Zeng, and S. Han, Sens. Actuat. B: Chem., 233, 25–30 (2016).

    Google Scholar 

  44. W. Shen, L. Q. Yan, W. W. Tian, X. Cui, Z. J. Qi, and Y. M. Sun, J. Lumin., 177, 299–305 (2016).

    Google Scholar 

  45. J. G. Huang, M. Tang, M. Liu, M. Zhou, Z. Liu, Y. Cao, M. Y. Zhu, S. G. Liu, and W. B. Zeng, Dyes Pigments, 107, 1–8 (2014).

    Google Scholar 

  46. L. Zhao, G. Wang, J. Chen, L. Zhang, B. Liu, J. Zhang, Q. Zhao, and Y. Zhou, J. Fluorine Chem., 158, 53–59 (2014).

    Google Scholar 

  47. K. Yin, Y. X. Wu, S. S. Wang, and L. X. Chen, Sens. Actuat. B: Chem., 232, 257–263 (2016).

    Google Scholar 

  48. J. Zhang, C. W. Yu, S. Y. Qian, G. Lu, and J. L. Chen, Dyes Pigments, 92, 1370–1375 (2012).

    Google Scholar 

  49. F. P. Hou, J. Cheng, P. X. Xi, F. J. Cheng, L. Huang, G. Q. Xie, Y. J. Xie, Y. J. Shi, H. Y. Liu, D. C. Bai, and Z. Z. Zeng, Dalton Trans., 41, 5799–5804 (2012).

    Google Scholar 

  50. T. Koike, T. Watanabe, S. Aoki, E. Kimura, and M. Shiro, J. Am. Chem. Soc., 118, 12696–12703 (1996).

    Google Scholar 

  51. K. Sasakura, K. Hanaoka, N. Shibuya, Y. Mikami, Y. Kimura, T. Komatsu, T. Ueno, T. Terai, H. Kimura, and T. Nagano, J. Am. Chem. Soc., 133, 18003–18005 (2011).

    Google Scholar 

  52. M. Maity, M. C. Majee, S. Kundu, S. K. Samanta, E. C. Sañudo, S. Ghosh, and M. Chaudhury, Inorg. Chem., 54, 9715−9726 (2015).

    Google Scholar 

  53. Z. Wang, Y. H. Xing, C. G. Wang, X. Q. Zeng, M. F. Ge, and S. Y. Niu, Transit. Met. Chem.,34, 655–661 (2009).

    Google Scholar 

  54. Y. Q. Sun, M. Liang, W. Dong, G. M. Yang, Dai, Z. Liao, Z. H. Jiang, S. P. Yan, and P. Cheng, Eur. J. Inorg. Chem., 7, 1514–1521 (2004).

    Google Scholar 

  55. H. Li, H. Guan, X. Duan, J. Hu, G. Wang, and Q. Wang, Org. Biomol. Chem., 11, 1805–1809 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-L. Wu.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 3, pp. 387–394, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Wang, C., Wu, YC. et al. Fluorescent Probe Derived from 1,8-Naphthalimide-Schiff Base for Copper(Ii) Ion: Synthesis, Characterization, and Application. J Appl Spectrosc 87, 429–436 (2020). https://doi.org/10.1007/s10812-020-01018-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01018-x

Keywords

Navigation