Skip to main content
Log in

Phase Composition, Microstructure, and Optical Properties of Cu2SnS3 Thin Films

  • Published:
Journal of Applied Spectroscopy Aims and scope

The Cu2SnS3 (CTS) thin films were produced by deposition of Sn/Cu layers by RF sputtering followed by annealing in an Ar/S atmosphere with S and Sn sources. According to XRD analysis and Raman spectroscopy, it was shown that single-phase CTS films of a monoclinic structure with traces of the CuxS phase were formed at a temperature of 520°C. Scanning electron microscopy revealed a compact and homogeneous microstructure of the polycrystalline CTS layers. Photoluminescence spectra of the СTS films of monoclinic modification show one wide peak in the energy range of 0.7–1.0 eV, due to optical transitions of electrons from the conduction band to deep energy levels of acceptor-type defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, Phys. Status Solidi — Rapid Res. Lett., 10, 583–586 (2016).

    Article  ADS  Google Scholar 

  2. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, Adv. Energy Mater., 4, 1301465(1–5) (2014).

    Article  Google Scholar 

  3. M. Onoda, X. Chen, A. Sato, and H. Wada, Mater. Res. Bull., 35, 1563–1570 (2000).

    Article  Google Scholar 

  4. D. Avellaneda, M. T. S. Nair, and P. K. Nair, J. Electrochem. Soc., 157, D346–D352 (2010).

    Google Scholar 

  5. N. Aihara, H. Araki, A. Takeuchi, K. Jimbo, and H. Katagiri, Phys. Status Solidi, 10, 1086–1091 (2013).

    Google Scholar 

  6. P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, J. Phys. D: Appl. Phys., 43, 215403 (2010).

    Article  ADS  Google Scholar 

  7. A. Kuku and O. A. Fakolujo, Sol. Energy Mater., 16, 199–204 (1987).

    Article  Google Scholar 

  8. A. Kanai, K. Toyonaga, K. Chino, H. Katagiri, and H. Araki, Jpn. J. Appl. Phys., 54, 08KC06(1–4) (2015).

    Article  Google Scholar 

  9. M. Nakashima, J. Fujimoto, T. Yamaguchi, and M. Izaki, Appl. Phys. Express, 8, 042303(1–4) (2015).

    Article  ADS  Google Scholar 

  10. A. C. Lokhande, R. B. V Chalapathy, M. He, E. Jo, M. Gang, S. A. Pawar, C. D. Lokhande, and J. H. Kim, Sol. Energy Mater. Sol. Cells, 153, 84–107 (2016).

    Article  Google Scholar 

  11. R. Chierchia, F. Pigna, M. Valentini, C. Malerba, E. Salza, P. Mangiapane, T. Polichetti, and A. Mittiga, Phys. Status Solidi Curr. Top. Solid State Phys., 13, 35–39 (2016).

    ADS  Google Scholar 

  12. D. Tiwari, T. K. Chaudhuri, T. Shripathi, U. Deshpande, and V. G. Sathe, Appl. Phys. Mater. Sci. Process., 117, 1139–1146 (2014).

    Article  Google Scholar 

  13. D. Tiwari, T. K. Chaudhuri, T. Shripathi, U. Deshpande, and R. Rawat, Sol. Energy Mater. Sol. Cells, 113, 165–170 (2013).

    Article  Google Scholar 

  14. J. Li, J. Huang, Y. Zhang, Y. Wang, C. Xue, G. Jiang, W. Liu, and C. Zhu, RSC Adv., 6, 58786–58795 (2016).

    Article  Google Scholar 

  15. H. Dahman and L. El Mir, J. Mater. Sci. Mater. Electron., 26, 6032–6039 (2015).

    Article  Google Scholar 

  16. J. Han, Y. Zhou, Y. Tian, Z. Huang, X. Wang, J. Zhong, Z. Xia, B. Yang, H. Song, and J. Tang, Front. Optoelectron., 7, 37–45 (2014).

    Article  Google Scholar 

  17. T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, and D. B. Mitzi, Adv. Energy Mater., 3, 34–38 (2013).

    Article  Google Scholar 

  18. M. Ferrari and L. Lutterotti, J. Appl. Phys., 76, No. 11, 7246–7255 (1994).

    Article  ADS  Google Scholar 

  19. H.-R. Wenk, S. Matthies, and L. Lutterotti, Mater. Sci. Forum, 157–162, 473–480 (1194).

    Google Scholar 

  20. L. Lutterotti, S. Matthies, H.-R. Wenk, A. J. Schultz, and J. Richardson, J. Appl. Phys., 81, No. 2, 594–600 (1997).

    Article  ADS  Google Scholar 

  21. Pawel Zawadzki, Lauryn L. Baranowski, Haowei Peng, Eric S. Toberer, David S. Ginley, William Tumas, Andriy Zakutayev, and Stephan Lany, Appl. Phys. Lett., 103, No. 25, 253902 (2013).

    Article  ADS  Google Scholar 

  22. G. Marcano, C. Rincón, S. A. López, G. Sánchez Pérez, J. L. Herrera-Pérez, J. G. Mendoza-Alvarez, and P. Rodríguez, Solid State Commun., 151, No. 1, 84–86 (2011).

    Article  ADS  Google Scholar 

  23. G. E. Delgado, A. J. Mora, G. Marcano, and C. Rincón, Mater. Res. Bull., 38, 1949–1953 (2003).

    Article  Google Scholar 

  24. T. J. Wieting and J. L. Verble, Phys. Rev. B, 3, 4286–4292 (1971).

    Article  ADS  Google Scholar 

  25. J. de Wild, E. Kalesaki, L. Wirtz, and P. J. Dale, Phys. Status Solidi RRL, 11, 1600410 (2017).

    Article  Google Scholar 

  26. A. Crovetto, R. Chen, R. B. Ettlinger, A. C. Cazzaniga, J. Schou, C. Persson, and O. Hansen, Sol. Energy Mater. Sol. Cells, 154, 121–129 (2016).

    Article  Google Scholar 

  27. N. Aihara, Y. Matsumoto, and K. Tanaka, Appl. Phys. Lett., 108, 092107 (2016).

    Article  ADS  Google Scholar 

  28. T. Raadik, M. Grossberg, J. Krustok, M. Kauk-Kuusik, A. Crovetto, R. Bolz Ettinger, O. Hansen, and J. Schou, Appl. Phys. Lett., 110, 261105 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Zaretskaya.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 3, pp. 462–468, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaretskaya, E.P., Gremenok, V.F., Ivanov, V.A. et al. Phase Composition, Microstructure, and Optical Properties of Cu2SnS3 Thin Films. J Appl Spectrosc 87, 488–494 (2020). https://doi.org/10.1007/s10812-020-01028-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01028-9

Keywords

Navigation