Skip to main content

Advertisement

Log in

Genetic Algorithm with Model-Updating-Based PLS Regression for the Spectrophotometric Determination of Clopidogrel, Atorvastatin, and Aspirin in the Presence of its Degradation Product

  • Published:
Journal of Applied Spectroscopy Aims and scope

A novel spectrophotometric method is described, including multivariate regression/model updating, for the analysis of a quaternary mixture of clopidogrel, atorvastatin, aspirin, and its degradation product salicylic acid. The multivariate algorithms adopted are partial least squares with and without using a "Genetic Algorithm" for selecting variables. Upon updating both models, they could be effectively applied to determine the studied drugs in their pharmaceutical formulations. Similarly, clopidogrel and aspirin in their combined pharmaceutical preparations could be readily determined. Moreover, the proposed method could be extended to the determination of spiked salicylic acid as a minor component in aspirin raw material and dosage forms. The accuracy and precision of the proposed methods were approved through statistical comparison with the reported methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Quinn and D. J. Fitzgerald, Circulation, 100, 1667–1672 (1999).

    Article  Google Scholar 

  2. K. Sharma, S. S. Hallan, B. Lal, A. Bhardwaj, and N. Mishra, Artif Cell. Nanomed. Biotechnol., 44, 1448–1456 (2016).

    Google Scholar 

  3. C. Battle, H. Hutchings, O. Bouamra, and P. A. Evans, PloS One, 9, e91284 ( 2014).

    Article  ADS  Google Scholar 

  4. P. Wenaweser, S. Windecker, M. Billinger, S. Cook, M. Togni, B. Meier, A. Haeberli, and O. M. Hess, Am. J. Cardiol., 99, 353–356 (2007).

    Article  Google Scholar 

  5. R. Amann and B. A. Peskar, Eur. J. Pharmacol., 447, 1–9 (2002).

    Article  Google Scholar 

  6. S. Singh, N. Dubey, and D. Jain, Asian J. Chem., 3, 885–887 (2010).

    Google Scholar 

  7. S. Londhe, S. Mulgund, R. Deshmukh, and K. Jain, Acta Chromatogr., 22, 297–305 (2010).

    Article  Google Scholar 

  8. S. V. Londhe, R. S. Deshmukh, S. V. Mulgund, and K. S. Jain, Indian J. Pharm. Sci., 73, 23–29 (2010).

    Google Scholar 

  9. H. Kaila, M. Ambasana, and A. Shah, Int. J. Chem. Technol. Res., 3, 456–465 (2011).

    Google Scholar 

  10. P. Geladi, Spectrochim. Acta, B, At. Spectrosc., 58, 767–782 (2003).

    Article  Google Scholar 

  11. H. Khajehsharifi , Z. Eskandari, and N. Sareban, Arab. J. Chem., 10, S141–S147 (2017).

    Article  Google Scholar 

  12. R. G. Brereton, Analyst, 122, 1521–1529 (1997).

    Article  ADS  Google Scholar 

  13. A. Abbaspour and R. Mirzajani, J. Pharm. Biomed. Anal., 38, 420–427 (2005).

    Article  Google Scholar 

  14. A. G. Frenich, D. Jouan-Rimbaud, D. Massart, S. Kuttatharmmakul, M. M. Galera, and J. M. Vidal, Analyst, 120, 2787–2792 (1995).

    Article  ADS  Google Scholar 

  15. K. A. Attia, M. W. Nassar, M. B. El-Zeiny, and A. Serag, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 170, 117–123 (2017).

  16. K. A. Attia, M. W. Nassar, M. B. El-Zeiny, and A. Serag, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 156, 54–62 (2016).

  17. K. A. Attia, N. M. El-Abasawi, A. El-Olemy, and A. H. Abdelazim, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 189, 154–160 (2018).

  18. R. Leardi and L. Nørgaard, J. Chemom., 18, 486–497 (2004).

    Article  Google Scholar 

  19. H. W. Darwish, S. A. Hassan, M. Y. Salem, and B. A. El-Zeany, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 122, 744–750 (2014).

  20. D. M. Haaland and E. V. Thomas, Anal. Chem., 60, 1193–1202 (1988).

    Article  Google Scholar 

  21. T. Mahmood, K. H. Liland, L. Snipen, and S. Sæbø, Chemom. Intell. Lab. Syst., 118, 62–69 (2012).

    Article  Google Scholar 

  22. R. Leardi, Chemometrics, 14, 643–655 (2000).

    Article  Google Scholar 

  23. N. E. Wagieh, M. A. Hegazy, M. Abdelkawy, and E. A. Abdelaleem, Talanta, 80, 2007–2010 (2010).

    Article  Google Scholar 

  24. X. Capron, B. Walczak, O. De Noord, and D. Massart, Chemom. Intell. Lab. Syst., 76, 205–214 (2005).

    Article  Google Scholar 

  25. J. C. Miller and J. N. Miller, Statistics and Chemometrics for Analytical Chemistry, Harlow, England, Pearson Education Ltd.; 39–73, 107–149, 256 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Salim.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 3, p. 510, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, M.M., El Sharkasy, M.E., Walash, M. et al. Genetic Algorithm with Model-Updating-Based PLS Regression for the Spectrophotometric Determination of Clopidogrel, Atorvastatin, and Aspirin in the Presence of its Degradation Product. J Appl Spectrosc 87, 568–578 (2020). https://doi.org/10.1007/s10812-020-01040-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01040-z

Keywords

Navigation