Skip to main content
Log in

Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Based on structure prediction method, the machine learning method is used instead of the density functional theory (DFT) method to predict the material properties, thereby accelerating the material search process. In this paper, we established a data set of carbon materials by high-throughput calculation with available carbon structures obtained from the Samara Carbon Allotrope Database. We then trained a machine learning (ML) model that specifically predicts the elastic modulus (bulk modulus, shear modulus, and the Young’s modulus) and confirmed that the accuracy is better than that of AFLOW-ML in predicting the elastic modulus of a carbon allotrope. We further combined our ML model with the CALYPSO code to search for new carbon structures with a high Young’s modulus. A new carbon allotrope not included in the Samara Carbon Allotrope Database, named Cmcm-C24, which exhibits a hardness greater than 80 GPa, was firstly revealed. The Cmcm-C24 phase was identified as a semiconductor with a direct bandgap. The structural stability, elastic modulus, and electronic properties of the new carbon allotrope were systematically studied, and the obtained results demonstrate the feasibility of ML methods accelerating the material search process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Deringer, G. Csányi, and D. M. Proserpio, Extracting crystal chemistry from amorphous carbon structures, ChemPhysChem 18(8), 873 (2017)

    Article  Google Scholar 

  2. Y. Zhuo, A. Mansouri Tehrani, and J. Brgoch, Predicting the band gaps of inorganic solids by machine learning, J. Phys. Chem. Lett. 9(7), 1668 (2018)

    Article  Google Scholar 

  3. J. Lee, A. Seko, K. Shitara, K. Nakayama, and I. Tanaka, Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques, Phys. Rev. B 93(11), 115104 (2016)

    Article  ADS  Google Scholar 

  4. P. Dey, J. Bible, S. Datta, S. Broderick, J. Jasinski, M. Sunkara, M. Menon, and K. Rajan, Informatics-aided bandgap engineering for solar materials, Comput. Mater. Sci. 83, 185 (2014)

    Article  Google Scholar 

  5. A. O. Oliynyk, L. A. Adutwum, B. W. Rudyk, H. Pisavadia, S. Lotfi, V. Hlukhyy, J. J. Harynuk, A. Mar, and J. Brgoch, Disentangling structural confusion through machine learning: Structure prediction and polymorphism of equiatomic ternary phases ABC, J. Am. Chem. Soc. 139(49), 17870 (2017)

    Article  Google Scholar 

  6. A. O. Oliynyk, L. A. Adutwum, J. J. Harynuk, and A. Mar, Classifying crystal structures of binary compounds AB through cluster resolution feature selection and support vector machine analysis, Chem. Mater. 28(18), 6672 (2016)

    Article  Google Scholar 

  7. F. Legrain, J. Carrete, A. van Roekeghem, S. Curtarolo, and N. Mingo, How the chemical composition alone can predict vibrational free energies and entropies of solids, Chem. Mater. 29(15), 6220 (2017)

    Article  Google Scholar 

  8. G. Pilania, P. V. Balachandran, C. Kim, and T. Lookman, Finding new perovskite halides via machine learning, Front. Mater. 3, 19 (2016)

    Article  ADS  Google Scholar 

  9. O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, and A. Tropsha, Universal fragment descriptors for predicting properties of inorganic crystals, Nat. Commun. 8(1), 15679 (2017)

    Article  ADS  Google Scholar 

  10. Y. Zhang and C. Ling, A strategy to apply machine learning to small datasets in materials science, npj Comput. Mater. 4, 25 (2018)

    Article  ADS  Google Scholar 

  11. A. Mansouri Tehrani, A. O. Oliynyk, M. Parry, Z. Rizvi, S. Couper, F. Lin, L. Miyagi, T. D. Sparks, and J. Brgoch, Machine learning directed search for ultraincompressible, superhard materials, J. Am. Chem. Soc. 140(31), 9844 (2018)

    Article  Google Scholar 

  12. Y. W. Zhang, H. Wang, Y. C. Wang, L. J. Zhang, and Y. M. Ma, Computer-assisted inverse design of inorganic electrides, Phys. Rev. X 7(1), 011017 (2017)

    Google Scholar 

  13. X. X. Zhang, Y. C. Wang, J. Lv, C. Y. Zhu, Q. Li, M. Zhang, Q. Li, and Y. M. Ma, First-principles structural design of superhard materials, J. Chem. Phys. 138(11), 114101 (2013)

    Article  ADS  Google Scholar 

  14. Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)

    Article  ADS  Google Scholar 

  15. Y. Sun, J. Lv, Y. Xie, H. Y. Liu, and Y. M. Ma, Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure, Phys. Rev. Lett. 123(9), 097001 (2019)

    Article  ADS  Google Scholar 

  16. Q. Wei, Q. Zhang, M. Zhang, H. Yan, L. Guo, and B. Wei, A novel hybrid sp-sp2 metallic carbon allorope, Front. Phys. 13(5), 136105 (2018)

    Article  ADS  Google Scholar 

  17. H. Yan, Z. Wei, M. Zhang, and Q. Wei, Exploration of stable stoichiometries, ground-state structures, and mechanical properties of the W-Si system, Ceram. Int. 46(10), 17034 (2020)

    Article  Google Scholar 

  18. J. Lin, Z. Y. Zhao, C. Y. Liu, J. Zhang, X. Du, G. C. Yang, and Y. M. Ma, IrF8 molecular crystal under high pressure, J. Am. Chem. Soc. 141(13), 5409 (2019)

    Article  Google Scholar 

  19. Z. Y. Zhao, S. T. Zhang, T. Yu, H. Y. Xu, A. Bergara, and G. C. Yang, Predicted pressure-induced superconducting transition in electride Li6P, Phys. Rev. Lett. 122(9), 097002 (2019)

    Article  ADS  Google Scholar 

  20. Q. Wei, W. Tong, R. K. Yang, H. Y. Yan, B. Wei, M. G. Zhang, X. C. Yang, and R. Zhang, Orthorhombic C10: A new superdense carbon allotrope, Phys. Lett. A 383(28), 125861 (2019)

    Article  Google Scholar 

  21. Q. C. Tong, L. T. Xue, J. Lv, Y. C. Wang, and Y. M. Ma, Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface, Faraday Discuss. 211, 31 (2018)

    Article  ADS  Google Scholar 

  22. K. Xia, H. Gao, C. Liu, J. N. Yuan, J. Sun, H. T. Wang, and D. Y. Xing, A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search, Sci. Bull. (Beijing) 63(13), 817 (2018)

    Article  ADS  Google Scholar 

  23. R. Hoffmann, A. A. Kabanov, A. A. Golov, and D. M. Proserpio, Homo Citans and carbon allotropes: For an ethics of citation, Angew. Chem. Int. Ed. 55(37), 10962 (2016)

    Article  Google Scholar 

  24. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmuller, and F. Bechstedt, Linear optical properties in the projector-augmented wave methodology, Phys. Rev. B 73(4), 045112 (2006)

    Article  ADS  Google Scholar 

  25. G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  26. M. G. Zhang, H. Y. Yan, and Q. Wei, Unexpected ground-state crystal structures and mechanical properties of transition metal pernitrides MN2 (M = Ti, Zr, and Hf), J. Alloys Compd. 774, 918 (2019)

    Article  Google Scholar 

  27. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 78(7), 1396 (1997) [Phys. Rev. Lett. 77, 3865 (1996)]

    Article  ADS  Google Scholar 

  28. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  29. A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)

    Article  ADS  Google Scholar 

  30. L. Ward, A. Dunn, A. Faghaninia, N. E. R. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J. Chen, K. Bystrom, M. Dylla, K. Chard, M. Asta, K. A. Persson, G. J. Snyder, I. Foster, and A. Jain, Matminer: An open source toolkit for materials data mining, Comput. Mater. Sci. 152, 60 (2018)

    Article  Google Scholar 

  31. E. Gossett, C. Toher, C. Oses, O. Isayev, F. Legrain, F. Rose, E. Zurek, J. Carrete, N. Mingo, A. Tropsha, and S. Curtarolo, AFLOW-ML: A RESTful API for machine-learning predictions of materials properties, Comput. Mater. Sci. 152, 134 (2018)

    Article  Google Scholar 

  32. A. R. Supka, T. E. Lyons, L. Liyanage, P. D’Amico, R. Al Rahal Al Orabi, S. Mahatara, P. Gopal, C. Toher, D. Ceresoli, A. Calzolari, S. Curtarolo, M. B. Nardelli, and M. Fornari, AFLOW: A minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians, Comput. Mater. Sci. 136, 76 (2017)

    Article  Google Scholar 

  33. M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW library of crystallographic prototypes(Part 1), Comput. Mater. Sci. 136, S1 (2017)

    Article  Google Scholar 

  34. W. L. Mao, H. K. Mao, P. J. Eng, T. P. Trainor, M. Newville, et al., Bonding changes in compressed super-hard graphite, Science 302(5644), 425 (2003)

    Article  ADS  Google Scholar 

  35. Y. J. Wang, J. E. Panzik, B. Kiefer, and K. K. M. Lee, Crystal structure of graphite under room-temperature compression and decompression, Sci. Rep. 2(1), 520 (2012)

    Article  ADS  Google Scholar 

  36. Q. Li, Y. M. Ma, A. R. Oganov, H. B. Wang, H. Wang, Y. Xu, T. Cui, H. K. Mao, and G. G. Zou, Superhard monoclinic polymorph of carbon, Phys. Rev. Lett. 102(17), 175506 (2009)

    Article  ADS  Google Scholar 

  37. E. Stavrou, S. Lobanov, H. F. Dong, A. R. Oganov, V. B. Prakapenka, Z. Konopkovaa, A. F. Goncharov, Synthesis of ultra-incompressible sp3-hybridized carbon nitride with 1:1 stoichiometry, Chem. Mater. 28(19), 6925 (2016)

    Article  Google Scholar 

  38. M. Zhang, H. Liu, Q. Li, B. Gao, Y. C. Wang, H. D. Li, C. F. Chen, and Y. M. Ma, Superhard BC3 in cubic diamond structure, Phys. Rev. Lett. 114(1), 015502 (2015)

    Article  ADS  Google Scholar 

  39. R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Lond. 65(5), 349 (1952)

    Article  ADS  Google Scholar 

  40. A. Lyakhov and A. Oganov, Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2, Phys. Rev. B 84(9), 092103 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China (Grant Nos. 11965005 and 11964026), the 111 Project (No. B17035), and the Natural Science Basic Research plan in Shaanxi Province of China (Grant Nos. 2020JM-186 and 2020JM-621). All authors thank the computing facilities at High Performance Computing Center of Xidian University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun Wei or Mei-Guang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, W., Wei, Q., Yan, HY. et al. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes. Front. Phys. 15, 63501 (2020). https://doi.org/10.1007/s11467-020-0970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0970-8

Keywords

Navigation