Skip to main content
Log in

Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease

  • Mini-Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Repetitive transcranial stimulation (rTMS) paradigms have been used to induce lasting changes in brain activity and excitability. Previous methods of stimulation were long, often ineffective and produced short-lived and variable results. A new non-invasive brain stimulation technique was developed in John Rothwell’s laboratory in the early 2000s, which was named ‘theta burst stimulation’ (TBS). This used rTMS applied in burst patterns of newly acquired 50 Hz rTMS machines, which emulated long-term potentiation/depression-like effects in brain slices. This stimulation paradigm created long-lasting changes in brain excitability, using efficient, very rapid stimulation, which would affect behaviour, with the aim to influence neurological diseases in humans. We describe the development of this technique, including findings and limitations identified since then. We discuss how pitfalls facing TBS reflect those involving both older and newer, non-invasive stimulation techniques, with suggestions of how to overcome these, using personalised, ‘closed loop’ stimulation methods. The challenge in most non-invasive stimulation techniques remains in identifying their exact mechanisms of action in the context of neurological disease models. The development of TBS provides the backdrop for describing John’s contribution to the field, inspiring our own scientific endeavour thanks to his unconditional support, and unfailing kindness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akkad H, Dupont-Hadwen J, Frese A, Tetkovic I, Barrett L, Bestmann S, Stagg CJ (2019) Increasing motor skill acquisition by driving theta-gamma coupling. BioRxiv. https://doi.org/10.1101/2019.12.20.883926

    Article  Google Scholar 

  • Allman C, Amadi U, Winkler AM, Wilkins L, Filippini N, Kischka U, Stagg CJ, Johansen-Berg H (2016) Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci Transl Med 8:330. https://doi.org/10.1126/scitranslmed.aad5651

    Article  CAS  Google Scholar 

  • Asamoah B, Khatoun A, McLaughlin M (2019) tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nat Commun 10(1):266. https://doi.org/10.1038/s41467-018-08183-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107

    CAS  PubMed  Google Scholar 

  • Berardelli A, Inghilleri M, Rothwell JC, Romeo S, Curra A, Gilio F, Modugno N, Manfredi M (1998) Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Exp Brain Res 122(1):79–84

    CAS  PubMed  Google Scholar 

  • Brittain JS, Probert-Smith P, Aziz TZ, Brown P (2013) Tremor suppression by rhythmic transcranial current stimulation. Curr Biol 23(5):403–407

    Google Scholar 

  • Capocchi G, Zampolini M, Larson J (1992) Theta burst stimulation is optimal for induction of LTP at both apical and basal dendritic synapses on hippocampal CA1 neurons. Brain Res 591:332–336

    CAS  PubMed  Google Scholar 

  • Cheeran B, Talelli P, Mori F, Koch G, Suppa A, Edwards M, Houlden H, Bhatia K, Greenwood R, Rothwell JC (2008) A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Phyisol 586(23):5717–5725

    CAS  Google Scholar 

  • Chen R, Gerloff C, Classen J, Wassemann EM, Hallett M, Cohen LG (1997) Safety of different inter-train intervals for repetitive transcranial magnetic stimulation and recommendations for safe ranges of stimulation parameters. Electroencephalogr Clin Neurophysiol 105(6):415–421

    CAS  PubMed  Google Scholar 

  • Daskalakis ZJ, Christensen BK, Fitzgerald PB, Chen R (2002) Transcranial magnetic stimulation: a new investigational and treatment tool in psychiatry. J Neuropsychiatry Clin Neurosci 14(4):406–415

    PubMed  Google Scholar 

  • Davarre M, Rothwell JC, Lemon RN (2010) Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp. Curr Biol 20(2):176–181

    Google Scholar 

  • Di Lazzaro V, Pilato F, Dileone M, Profice P, Oliviero A, Mazzone P, Insola A, Ranieri F, Meglio M, Tonali PA, Rothwell JC (2008a) The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. J Physiol 586(16):3871–3879

    PubMed  PubMed Central  Google Scholar 

  • Di Lazzaro V, Pilato F, Dileone M, Profice P, Capone F, Ranieri F, Musumeci G, Cianfoni A, Pasqualetti P, Tonali PA (2008b) Modulating cortical excitability in acute stroke a repetitive TMS study. Clin Neurophysiol 119(3):715–723

    PubMed  Google Scholar 

  • Diamond DM, Dunwiddie TV, Rose GM (1988) Characteristics of hippocampal primed burst potentiation in vitro and in the awake rat. J Neurosci 8:4079–4088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards MJ, Huang YZ, Mir P, Rothwell JC, Bhatia KP (2006) Abnormalities in motor cortical plasticity differentiate manifesting and nonmanifesting DYT1 carriers. Mov Disord 21:2181–2186. https://doi.org/10.1002/mds.21160

    Article  PubMed  Google Scholar 

  • Fierro B, Piazza A, Brighina F, La Bua V, Buffa D, Oliveri M (2001) Modulation of intracortical inhibition induced by low- and high-frequency repetitive transcranial magnetic stimulation. Exp Brain Res 138(4):452–457

    CAS  PubMed  Google Scholar 

  • Fitzgerald PB, Brown TL, Daskalakis ZJ, Chen R, Kulkarni J (2002) Intensity-dependent effects of 1Hz rTMS on human corticospinal excitability. Clin Neurophysiol 113(7):1136–1141

    PubMed  Google Scholar 

  • Froc DJ, Chapman CA, Trepel C, Racine RJ (2000) Long-term depression and depotentiation in the sensorimotor cortex of the freely moving rat. J Neurosci 20:438–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gentner R, Wankerl K, Reinsberger C, Zeller D, Classen J (2008) Depression of human corticospinal excitability induced by magnetic theta burst stimulation: evidence of rapid polarity-reversing metaplasticity. Cereb Cortex 18(9):2046–2053

    PubMed  Google Scholar 

  • Goldsworthy MR, Pitcher JB, Ridding MC (2012) The application of spaced theta burst protocols induces long-lasting neuroplastic changes in the human motor cortex. Eur J Neurosci 35:125–134. https://doi.org/10.1111/j.1460-9568.2011.07924.x

    Article  PubMed  Google Scholar 

  • Guo Q, Li C, Wang J (2017) Updated review on the clinical use of repetitive transcranial magnetic stimulation in psychiatric disorders. Neurosci Bull 33(6):747–756

    PubMed  PubMed Central  Google Scholar 

  • Hamada M, Terao Y, Hanajima R, Shirota Y, Nakatani-Enomoto S, Furubayashi T et al (2008) Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. J Physiol 586:3927–3947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC (2013) The role of interneuron networks in driving human motor cortical plasticity. Cer Cortex 23:1593–1605

    Google Scholar 

  • Hermann CS, Rach S, Neuling T, Struber D (2013) Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci 7:279

    Google Scholar 

  • Hsu YF, Liao KK, Lee PL et al (2011) Intermittent theta burst stimulation over primary motor cortex enhances movement-related beta synchronisation. Clin Neurophysiol 122:2260–2267. https://doi.org/10.1016/j.clinph.2011.03.02710.1016/j.clinph.2007.01.021

    Article  PubMed  Google Scholar 

  • Huang YZ (2005) Theta burst stimulation of human cortex. Doctoral thesis. University of London, London

    Google Scholar 

  • Huang YZ, Rothwell JC (2004) The effect of short-duration bursts of high-frequency, low-intensity transcranial magnetic stimulation on the human motor cortex. Clin Neurophysiol 115:1069–1075

    PubMed  Google Scholar 

  • Huang YZ, Edwards MJ, Rounis E, Bhatia K (2005) Theta burst human of the human motor cortex. Neuron 45(2):201–206

    CAS  PubMed  Google Scholar 

  • Huang YZ, Chen RS, Rothwell JC, Wen HY (2007) The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol 118:1028–1032

    CAS  PubMed  Google Scholar 

  • Huang YZ, Rothwell JC, Edwards MJ, Chen RS (2008) Effect of physiological activity on an NMDA-dependent form of cortical plasticity in human. Cereb Cortex 18:563–570. https://doi.org/10.1093/cercor/bhm087

    Article  PubMed  Google Scholar 

  • Huang YZ, Rothwell JC, Lu CS, Wang J, Chen RS (2010) Restoration of motor inhibition through an abnormal premotor-motor connection in dystonia. Mov Disord 25:696–703. https://doi.org/10.1002/mds.22814

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang YZ, Rothwell JC, Chen RS, Lu CS, Chuang WL (2011a) The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin Neurophysiol 122:1011–1018. https://doi.org/10.1016/j.clinph.2010.08.016

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang YZ, Rothwell JC, Lu CS, Chuang WL, Chen RS (2011b) Abnormal bidirectional plasticity-like effects in Parkinson's disease. Brain 134:2312–2320. https://doi.org/10.1093/brain/awr158

    Article  PubMed  Google Scholar 

  • Huang YZ, Lu CS, Rothwell JC, Lo CC, Chuang WL, Weng YH, Lai SC, Chen RS (2012) Modulation of the disturbed motor network in dystonia by multisession suppression of premotor cortex. PLoS ONE 7(10):e47574. https://doi.org/10.1371/journal.pone.0047574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YZ, Lu MK, Antal A et al (2017) Plasticity induced by non-invasive transcranial brain stimulation: a position paper. Clin Neurophysiol 128:2318–2329. https://doi.org/10.1016/j.clinph.2017.09.007

    Article  PubMed  Google Scholar 

  • Huang YZ, Chen RS, Fong PY et al (2018) Inter-cortical modulation from premotor to motor plasticity. J Physiol 596:4207–4217. https://doi.org/10.1113/JP276276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iezzi E, Conte A, Suppa A, Agostino R, Dinapoli L, Scontrini A, Berardelli A (2008) Phasic voluntary movements reverse the aftereffects of subsequent theta burst stimulation in humans. J Neurophysiol 100(4):2070–2076

    PubMed  Google Scholar 

  • Jackson SE, Chester JD (2015) Personalised cancer medicine. Int J of cancer 137:262–266

    CAS  Google Scholar 

  • Koch PJ, Hummel FC (2017) Towards precision medicine: tailoring interventional strategies based on noninvasive brain stimulation for motor recovery after stroke. Curr Opinion in Neurol 30(4):388–397

    Google Scholar 

  • Koch G, Mori F, Marconi B, Codeca C, Pecchioli C, Salerno S, Torriero S, Lo Gerfo E, Mir P, Oliveri M, Caltagirone C (2008) Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurphysiol 119(11):2559–2569

    Google Scholar 

  • Larson J, Lynch G (1989) Theta pattern stimulation and the induction of LTP: the sequence in which synapses are stimulated determines the degree to which they potentiate. Brain Res 489:49–58

    CAS  PubMed  Google Scholar 

  • Lefaucheur JP, Andre-Obadia N, Antal A et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation. Clin Neurophys 125(11):2150–2206

    Google Scholar 

  • Lioumis P, Kicic D, Savolainen P, Makela JP, Kahkonen S (2009) Reproducibility of TMS-Evoked EEG responses. Hum Brain Mapp 30:1387–1396. https://doi.org/10.1002/hbm.20608

    Article  PubMed  Google Scholar 

  • Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 133(4):425–430

    CAS  PubMed  Google Scholar 

  • Modugno N, Curra A, Conte A, Inghilleri M, Fofi L, Agostino R, Manfredi M, Berardelli A (2003) Depressed intracortical inhibition after long trains of subthreshold repetitive magnetic stimuli at low frequency. Clin Neurophysiol 114(12):2416–2422

    PubMed  Google Scholar 

  • Muellbacher W, Ziemann U, Boroojerdi B, Hallett M (2000) Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin Neurophysiol 111:1002–1007

    CAS  PubMed  Google Scholar 

  • Mutanen T, Nieminen JO, Ilmoniemi RJ (2013) TMS-evoked changes in brain-state dynamics quantified by using EEG data. Front Hum Neurosci 7:155. https://doi.org/10.3389/fnhum.2013.00155

    Article  PubMed  PubMed Central  Google Scholar 

  • Obeso I, Wilkinson L, Teo JT, Talelli P, Rothwell JC, Jahanshahi M (2017) Theta burst magnetic stimulation over the pre-supplementary motor area improves motor inhibition. Brain Stim 10(5):944–951

    Google Scholar 

  • Pascual-Leone A, Grafman J, Hallett M (1994) Modulation of cortical motor output maps during development of implicit and explicit learning. Science 263(5151):1287–1289

    CAS  PubMed  Google Scholar 

  • Peinemann A, Reimer B, Loer C, Quartarone A, Munchau A, Conrad B, Siebner HR (2004) Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5Hz repetitive TMS to the primary motor cortex. Clin Neurophysiol 115(7):1519–1526

    PubMed  Google Scholar 

  • Peterchev AV, Murphy DL, Lisanby SH (2010) Repetitive transcranial magnetic stimulator with controllable pulse parameters (cTMS). Conf Proc IEEE Eng Med Biol Soc 8:2922–2926. https://doi.org/10.1109/IEMBS.2010.5626287

    Article  Google Scholar 

  • Ridding MC, Ziemann U (2010) Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol 588(Pt 13):2291–2304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romei V, Driver J, Schynz PG, Thut G (2011) Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr Biol 21:334–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothwell JC (2011) Using transcranial magnetic stimulation methods to probe connectivity between areas of the brain. Hum Mov Sci 30:906–915

    PubMed  Google Scholar 

  • Rounis E, Lee L, Siebner HR, Rowe JB, Friston KJ, Rothwell JC, Frackowiak RS (2005) Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex. Neuroimage 26(1):164–176

    PubMed  Google Scholar 

  • Rounis E, Stephan KE, Lee L, Siebner HR, Pesenti A, Friston KJ, Rothwell JC, Frackowiak RS (2006) Acute changes in frontoparietal activity after repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in a cued reaction time task. J Neurosci 26(38):9629–9638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rounis E, Maniscalo B, Rothwell JC, Passingham RE, Lau H (2010) Theta-burst transcranial magnetic stimulation to the prefrontal cortex impairs metacognitive visual awareness. Cogn Neurosci 1:165–175

    PubMed  Google Scholar 

  • Schaworonkow N, Triesch J, Ziemann U, Zrenner C (2019) EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities. Brain Stimul 12:110–118. https://doi.org/10.1016/j.brs.2018.09.009

    Article  PubMed  Google Scholar 

  • Siebner HR, Tormos JM, Ceballos-Baumann AO, Auer C, Catala MD, Conrad B, Pascual-Leone A (1999a) Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer's cramp. Neurology 52:529–537

    CAS  PubMed  Google Scholar 

  • Siebner HR, Mentschel C, Auer C, Conrad B (1999b) Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson's disease. NeuroReport 10:589–594

    CAS  PubMed  Google Scholar 

  • Stagg CJ, Wylezinska M, Matthew PM, Johansen-Berg H, Jezzard P, Rothwell JC, Bestmann S (2009) Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy. J Neurophysiol 101:2872–2877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stubbeman WF, Zarrabi B, Bastea S, Ragland V, Khairkhah R (2018) Bilateral neuronavigated 20Hz theta burst TMS for treatment refractory depression: an open label study. Brain Stimul 11:953–955. https://doi.org/10.1016/j.brs.2018.04.012

    Article  PubMed  Google Scholar 

  • Suppa A, Huang YZ, Funke K, Ridding MC, Cheeran B, Di Lazzaro V, Ziemman U, Rothwell JC (2016) Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stim 9:323–335

    CAS  Google Scholar 

  • Talelli P, Wallace A, Dileone M, Hoad D, Cheeran B, Oliver R, VandenBoz M, Hammerbeck U, Barratt K, Gillini C, Musumeci G, Boudrias MH, Cloud GC, Ball J, Marsden JF, Ward NS, Di Lazzaro V, Greenwood RG, Rothwell JC (2012) Theta burst stimulation in the rehabilitation of the upper limb: a semirandomized, placebo-controlled trial in chronic stroke patients. Neurorehabil Neural Repair 26(8):976–987

    PubMed  PubMed Central  Google Scholar 

  • Teo JT, Swayne OB, Rothwell JC (2007) Further evidence for NMDA-dependence of the after effects of human theta burst stimulation. Clin Neurophysiol 118:1649–1651

    CAS  PubMed  Google Scholar 

  • Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J (2011) Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol 21:1176–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Touge T, Gerschlager W, Brown P, Rothwell JC (2001) Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin Neurophysiol 112(11):2138–2145

    CAS  PubMed  Google Scholar 

  • Trepel C, Racine RJ (1998) Long-term potentiation in the neocortex of the adult, freely moving rat. Cereb Cortex 8:719–729

    CAS  PubMed  Google Scholar 

  • Tse NY, Goldsworthy MR, Ridding MC, Coxon JP, Fitzgerald PB, Fornito A, Rogasch NC (2018) The effect of stimulation interval on plasticity following repeated blocks of intermittent theta burst stimulation. Sci Rep 8:8526. https://doi.org/10.1038/s41598-018-26791-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 108:1–16

    CAS  PubMed  Google Scholar 

  • Williams NR, Sudheimer KD, Bentzley BS et al (2018) High-dose spaced theta-burst TMS as a rapid-acting antidepressant in highly refractory depression. Brain 141:e18. https://doi.org/10.1093/brain/awx379

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson MT, Fulcher BD, Fung PK, Robinson PA, Fornito A, Rogasch NC (2018) Biophysical modelling of neural plasticity induced by transcranial magnetic stimulation. Clin Neurophys 129:1230–1241

    Google Scholar 

  • Ziemann U, Paulus W, NitescheMA P-L, Byblow WD, Berardelli A, Siebner HR, Classen J, Cohen LG, Rothwell JC (2008) Consensus: Motor cortex plasticity protocols. Brain Stimul 1(3):164–182

    PubMed  Google Scholar 

  • Zrenner C, Belardinelli P, Muller-Dahlhaus F, Ziemann U (2016) Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops. Front Cell Neurosci 10:92. https://doi.org/10.3389/fncel.2016.00092

    Article  PubMed  PubMed Central  Google Scholar 

  • Zrenner C, Desideri D, Belardinelli P, Ziemann U (2018) Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimul 11:374–389. https://doi.org/10.1016/j.brs.2017.11.016

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor John Rothwell for supervising our respective PhDs and for providing his support in our development as clinician scientists after this was completed. He has guided the development of TBS, and supported its implementation across disciplines, remaining open to criticism and investigating mechanisms of action at neuropharmacological and electrophysiological levels. He has provided new ways of identifying reasons for variability in the results obtained (Rothwell 2011, Hamada et al. 2013). He has been a role model for implementing our scientific endeavours with kindness, humility, and perseverance. He is one of the rare basic scientists to have provided a comprehensive body of clinical work, having collaborated very effectively with clinicians throughout his career.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Zu Huang.

Additional information

Communicated by Sven Bestmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rounis, E., Huang, YZ. Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease. Exp Brain Res 238, 1707–1714 (2020). https://doi.org/10.1007/s00221-020-05880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-020-05880-1

Keywords

Navigation