Skip to main content
Log in

Different approaches of measuring high-voltage nanosecond pulses and power delivery in plasma systems

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In the presented study, we consider several methods to measure high-voltage, nanosecond-duration electrical pulses, and their implementation for understanding the applied voltage, current, incident, reflected, and power at a load. We examine different probes for the most common transmission line types used in high-voltage pulser’s output, present their strengths and weaknesses, and give recommendations for their use. Special attention was given to the back current shunt and its properties. This method allows scientists and researchers to directly observe the voltage profile in real-time and may find broader use in pulsed power and plasma applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ashpis D, Laun M, Griebeler E (2012) “Progress toward accurate measurements of power consumption of DBD plasma actuators,” in 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 2012, no. January, pp 1–24

  2. Singh KP, Roy S (2007) Impedance matching for an asymmetric dielectric barrier discharge plasma actuator. Appl Phys Lett 91(8):081504

    Article  Google Scholar 

  3. Mohamed Salem M, Loiseau J-F, Held B (1998) Impedance matching for optimization of power transfer in a capacitively excited RF plasma reactor. Eur Phys J Appl Phys 3(1):91–95

    Article  Google Scholar 

  4. Winands GJJ, Liu Z, van Heesch EJM, Pemen AJM, Yan K (2008) Matching a pulsed-power modulator to a streamer plasma reactor. IEEE Trans Plasma Sci 36(1):243–252

    Article  Google Scholar 

  5. Huiskamp T, Takamura N, Namihira T, Pemen AJM (2015) Matching a nanosecond pulse source to a streamer corona plasma reactor with a dc bias. IEEE Trans Plasma Sci 43(2):617–624

    Article  Google Scholar 

  6. Huiskamp T, Beckers FJCM, Hoeben WFLM, Van Heesch EJM, Pemen AJM (2016) Matching a (sub)nanosecond pulse source to a corona plasma reactor. Plasma Sour Sci Technol 25(5):054006

    Article  Google Scholar 

  7. Wang D, Okada S, Matsumoto T, Namihira T, Akiyama H (2010) Pulsed discharge induced by nanosecond pulsed power in atmospheric air. IEEE Trans Plasma Sci 38(10):2746–2751

    Article  Google Scholar 

  8. Wang D, Namihira T, Fujiya K, Katsuki S, Akiyama H (2004) The reactor design for diesel exhaust control using a magnetic pulse compressor. IEEE Trans Plasma Sci 32(5):2038–2044

    Article  Google Scholar 

  9. Fukawa F, Shimomura N, Yano T, Yamanaka S, Teranishi K, Akiyama H (2008) Application of nanosecond pulsed power to ozone production by streamer corona. IEEE Trans Plasma Sci 36(5):2592–2597

    Article  Google Scholar 

  10. Wang X, Khomenko A, Shashurin A (2019) Enhancement of positive pulsed corona by dielectric enclosure. AIP Adv 9(10):105029

    Article  Google Scholar 

  11. Wang H, Wandell RJ, Tachibana K, Voráč J, Locke BR (2019) The influence of liquid conductivity on electrical breakdown and hydrogen peroxide production in a nanosecond pulsed plasma discharge generated in a water-film plasma reactor. J Phys D Appl Phys 52(7):075201

    Article  Google Scholar 

  12. Macheret SO, Shneider MN, Murray RC (2006) Ionization in strong electric fields and dynamics of nanosecond-pulse plasmas. Phys Plasmas 13(2):023502

    Article  Google Scholar 

  13. Huiskamp T, Beckers FJCM, Van Heesch EJM, Pemen AJM (2016) B-dot and D-dot sensors for (sub)nanosecond high-voltage and high-current pulse measurements. IEEE Sens J 16(10):3792–3801

    Article  Google Scholar 

  14. Novac BM et al (2018) Theoretical and experimental studies of off-the-shelf V-dot probes. IEEE Trans Plasma Sci 46(8):2985–2992

    Article  Google Scholar 

  15. Ulmaskulov MR et al (2017) Energy compression of nanosecond high-voltage pulses based on two-stage hybrid scheme. Rev Sci Instrum 88(4):045106

    Article  Google Scholar 

  16. Beckers FJCM, Huiskamp T, Pemen AJM, van Heesch EJM (2020) Energizing a long nanosecond pulsed corona reactor: electrical characterization. IEEE Trans Plasma Sci 48(2):500–511

    Article  Google Scholar 

  17. Park BJH (1947) Shunts and inductors for surge-current measurements. J Res Natl Bur Stand 39:191–212

    Article  Google Scholar 

  18. Ley JM, Christmas TM, Wildey CG (1970) Solid-state subnanosecond light switch. Proc Inst Electr Eng 117(6):1057

    Article  Google Scholar 

  19. Thornton E (1975) Subnanosecond risetime in metal foil coaxial shunts (for pulsed current measurement). J Phys E 8(12):1052–1054

    Article  Google Scholar 

  20. Stepanyan SA, Starikovskiy AY, Popov NA, Starikovskaia SM (2014) A nanosecond surface dielectric barrier discharge in air at high pressures and different polarities of applied pulses: transition to filamentary mode. Plasma Sour Sci Technol 23(4):045003

    Article  Google Scholar 

  21. Shcherbanev SA, Yu Khomenko A, Stepanyan SA, Popov NA, Starikovskaia SM (2016) Optical emission spectrum of filamentary nanosecond surface dielectric barrier discharge. Plasma Sour Sci Technol 26(2):02LT01

    Article  Google Scholar 

  22. Ding C, Khomenko AY, Shcherbanev SA, Starikovskaia SM (2019) Filamentary nanosecond surface dielectric barrier discharge. experimental comparison of the streamer-to-filament transition for positive and negative polarities. Plasma Sour Sci Technol 28(8):085005

    Article  Google Scholar 

  23. Dobrynin D, Rakhmanov R, Fridman A (2019) Nanosecond-pulsed spark discharge plasma in liquid nitrogen: synthesis of polynitrogen from NaN3. J Phys D Appl Phys 52(45):455502

    Article  Google Scholar 

  24. Liu C, Fridman A, Dobrynin D (2018) Uniformity analysis of nanosecond and sub-nanosecond pulsed DBD in atmospheric air. Plasma Res Express 1(1):015007

    Article  Google Scholar 

  25. Grosse K, Held J, Kai M, von Keudell A (2019) Nanosecond plasmas in water: ignition, cavitation and plasma parameters. Plasma Sour Sci Technol 28(8):085003

    Article  Google Scholar 

  26. Klochko A (2014) “Excited species chemistry in homogeneous nanosecond discharges with high specific energy deposition.” Ecole Polytech, Ecole Polytechnique, France, p 306

  27. Podolsky V, Khomenko A, Macheret S (2018) Time-resolved measurements of electron number density in argon and nitrogen plasmas sustained by high-voltage, high repetition rate, nanosecond pulses. Plasma Sour Sci Technol 27(10):10LT02

    Article  Google Scholar 

  28. Rotholz E (1981) Transmission-line transformers. IEEE Trans Microw Theory Tech 29(4):327–331

    Article  Google Scholar 

  29. Wandell RJ, Wang H, Tachibana K, Makled B, Locke BR (2018) Nanosecond pulsed plasma discharge over a flowing water film: characterization of hydrodynamics, electrical, and plasma properties and their effect on hydrogen peroxide generation. Plasma Process Polym 15(6):1800008

    Article  Google Scholar 

  30. Reguig A, Ramljak B, Chatelain KP, Damazo JS, Kwon E, Lacoste DA (2019) Comparison of electrical breakdowns produced by a nanosecond high-voltage pulse applied to metallic and composite material electrodes. IEEE Trans Plasma Sci 47(10):4683–4690

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Khomenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomenko, A., Podolsky, V. & Wang, X. Different approaches of measuring high-voltage nanosecond pulses and power delivery in plasma systems. Electr Eng 103, 57–66 (2021). https://doi.org/10.1007/s00202-020-01058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01058-8

Keywords

Navigation