Skip to main content
Log in

A symbiotic yeast to enhance heterotrophic and mixotrophic cultivation of Chlorella pyrenoidosa using sucrose as the carbon source

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Heterotrophic or mixotrophic culture of microalgae is feasible alternative approach to avoid light limitation in autotrophic culture. However, only a few kinds of organic carbon sources are available for algal culture. Disaccharides, such as sucrose, are difficult to be utilized by microalgae under both heterotrophic and mixotrophic conditions. In this study, a symbiotic yeast was accidentally found in a contaminated algal suspension. The symbiotic yeast was isolated and identified as Cryptococcus sp. This yeast was able to extracellularly hydrolyze sucrose and accumulated monosaccharides in the medium. It can enhance algal growth using sucrose as the carbon source at both heterotrophic and mixotrophic modes when mix-cultured with Chlorella pyrenoidosa. The highest algal cell density of 118.8 × 106 and 151.2 × 106 cells/mL was achieved with a final algal percentage of 83.5 and 93.2% at heterotrophic and mixotrophic culture, respectively. Furthermore, the protein and lipid content was significantly enhanced by mix-culture C. pyrenoidosa with Cryptococcus YZU-1. The fatty acid accumulated in this co-culture system was suitable for the production of biodiesel. This symbiotic yeast solved the problem that C. pyrenoidosa cannot heterotrophically or mixotrophically utilize sucrose. A high algae density was obtained and the protein and lipid accumulation were also significantly enhanced. This study provided a novel approach for production of protein or lipid-rich biomass using sucrose or sucrose-rich wastes as the carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IAA:

Indole-3-acetic acid

MUFA:

Monounsaturated fatty acid

PUFA:

Polyunsaturated fatty acid

SFA:

Saturated fatty acid

References

  1. Chandra R, Iqbal HMN, Vishal G, Lee HS, Nagra S (2019) Algal biorefinery: a sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour Technol 278:346–359. https://doi.org/10.1016/j.biortech.2019.01.104

    Article  CAS  PubMed  Google Scholar 

  2. Hu J, Nagarajan D, Zhang Q, Chang JS, Lee DJ (2018) Heterotrophic cultivation of microalgae for pigment production: a review. Biotechnol Adv 36:54–67. https://doi.org/10.1016/j.biotechadv.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  3. Zhan J, Rong J, Wang Q (2017) Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. Int J Hydrogen Energy 42:8505–8517. https://doi.org/10.1016/j.ijhydene.2016.12.021

    Article  CAS  Google Scholar 

  4. Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36. https://doi.org/10.1016/j.watres.2010.08.037

    Article  CAS  PubMed  Google Scholar 

  5. Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771. https://doi.org/10.1002/bit.21489

    Article  CAS  PubMed  Google Scholar 

  6. Wu L, Wu S, Qiu J, Xu C, Li S, Xu H (2017) Green synthesis of isomaltulose from cane molasses by Bacillus subtilis WB800-pHA01-palI in a biologic membrane reactor. Food Chem 229:761–768. https://doi.org/10.1016/j.foodchem.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  7. Zhang W, Zhang P, Sun H, Chen M, Lu S, Li P (2014) Effects of various organic carbon sources on the growth and biochemical composition of Chlorella pyrenoidosa. Bioresour Technol 173:52–58. https://doi.org/10.1016/j.biortech.2014.09.084

    Article  CAS  PubMed  Google Scholar 

  8. Kilian SG, Sutherland FCW, Meyer PS, Du Preez JC (1997) Transport-limited sucrose utilization and neokestose production by Phaffia rhodozyma. Biotechnol Lett 18:975–980

    Article  Google Scholar 

  9. Wang SK, Wu Y, Wang X (2016) Heterotrophic cultivation of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with Rhodotorula glutinis. Bioresour Technol 220:615–620. https://doi.org/10.1016/j.biortech.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  10. Wang SK, Wang X, Tao HH, Sun XS, Tian YT (2018) Heterotrophic culture of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with immobilized yeast. Bioresour Technol 249:425–430. https://doi.org/10.1016/j.biortech.2017.10.049

    Article  CAS  PubMed  Google Scholar 

  11. Dao GH, Wu GX, Wang XX, Zhang TY, Zhan XM, Hu HY (2018) Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria. Algal Res 33:345–351. https://doi.org/10.1016/j.algal.2018.06.006

    Article  Google Scholar 

  12. Xue LG, Shang H, Ma P, Wang X, He XY, Niu JB, Wu JL (2018) Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria. J Basic Microbiol 58:358–367. https://doi.org/10.1002/jobm.201700594

    Article  CAS  PubMed  Google Scholar 

  13. Amor DR, Bello MD (2019) Bottom-up approaches to synthetic cooperation in microbial communities. Life 9:22. https://doi.org/10.3390/life9010022

    Article  CAS  Google Scholar 

  14. Smith RT, Bangert K, Wilkinson SJ, Gilmour DJ (2015) Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractinium inermum. Biomass Bioenergy 82:73–86. https://doi.org/10.1016/j.biombioe.2015.04.023

    Article  CAS  Google Scholar 

  15. Foster RA, Kuypers MMM, Vagner T, Paerl RW, Musat N, Zehr JP (2011) Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J 5:1484–1493. https://doi.org/10.1038/ismej.2011.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haines KC, Guillard RRL (1974) Growth of vitamin B12-requiring marine diatoms in mixed laboratory cultures with vitamin B12-producing marine bacteria. J Phycol 10:245–252. https://doi.org/10.1111/j.1529-8817.1974.tb02709.x

    Article  CAS  Google Scholar 

  17. Tandon P, Jin Q, Huang L (2017) A promising approach to enhance microalgae productivity by exogenous supply of vitamins. Microb Cell Fact 16:219. https://doi.org/10.1186/s12934-017-0834-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou W, Cheng Y, Li Y, Wan Y, Liu Y, Lin X, Ruan R (2012) Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol 167:214–228. https://doi.org/10.1007/s12010-012-9667-y

    Article  CAS  PubMed  Google Scholar 

  19. Shen P, Chen X (2006) Microbiology, 2nd edn. Higher Education Press, Beijing

    Google Scholar 

  20. Fontana A, Ghommidh C, Guiraud JP, Navarro JM (1992) Continuous alcoholic fermentation of sucrose using flocculating yeast. The limits of invertase activity. Biotechnol Lett 14:505–510. https://doi.org/10.1007/BF01023176

    Article  CAS  Google Scholar 

  21. Costaglioli P, Meilhoc F, Janatova I, Klein R, Masson J (1997) Secretion of invertase from Schwanniomyces occidentalis. Biotechnol Lett 19:623–627. https://doi.org/10.1023/A:1018326512461

    Article  CAS  Google Scholar 

  22. Francisco EC, Franco TT, Wagner R, Jacob-Lopes E (2014) Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria. Bioprocess Biosyst Eng 37:1497–1505. https://doi.org/10.1007/s00449-013-1121-1

    Article  CAS  PubMed  Google Scholar 

  23. Sun N, Wang Y, Li YT, Huang JC, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292. https://doi.org/10.1016/j.procbio.2008.07.014

    Article  CAS  Google Scholar 

  24. Zhang HF, Wang WL, Li YG, Yang WJ, Shen GM (2011) Mixotrophic cultivation of Botryococcus braunii. Biomass Bioenerg 35:1710–1715. https://doi.org/10.1016/j.biombioe.2011.01.002

    Article  CAS  Google Scholar 

  25. Lin TS, Wu JY (2015) Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour Technol 184:100–107. https://doi.org/10.1016/j.biortech.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  26. Reid SJ, Abratt VR (2005) Sucrose utilisation in bacteria: genetic organization and regulation. Appl Microbiol Biotechnol 67:312–321. https://doi.org/10.1007/s00253-004-1885-y

    Article  CAS  PubMed  Google Scholar 

  27. Seiboth B, Pakdaman BS, Hartl L, Kubicek CP (2007) Lactose metabolism in filamentous fungi: how to deal with an unknown substrate. Fungal Biol Rev 1:42–48. https://doi.org/10.1016/j.fbr.2007.02.006

    Article  Google Scholar 

  28. Rajapitamahuni S, Bachani P, Sardar RK, Mishra S (2019) Co-cultivation of siderophore-producing bacteria Idiomarina loihiensis RS14 with Chlorella variabilis ATCC 12198, evaluation of micro-algal growth, lipid, and protein content under iron starvation. J Appl Phycol 31:29–39. https://doi.org/10.1007/s10811-018-1591-2

    Article  CAS  Google Scholar 

  29. Li H, Zhong Y, Lu Q, Zhang X, Wang Q, Liu H, Diao Z, Yao C, Liu H (2019) Co-cultivation of Rhodotorula glutinis and Chlorella pyrenoidosa to improve nutrient removal and protein content by their synergistic relationship. RSC Adv 9:14331–14342. https://doi.org/10.1039/C9RA01884K

    Article  CAS  Google Scholar 

  30. Xue F, Miao J, Zhang X, Tan T (2010) A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis. Appl Biochem Biotechnol 160:498–503. https://doi.org/10.1007/s12010-008-8376-z

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Ji H, Gong G, Zhang X, Tan T (2014) Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields. Bioresour Technol 164:93–99. https://doi.org/10.1016/j.biortech.2014.04.039

    Article  CAS  PubMed  Google Scholar 

  32. Yen HW, Chen PW, Chen LJ (2015) The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresour Technol 184:148–152. https://doi.org/10.1016/j.biortech.2014.09.113

    Article  CAS  PubMed  Google Scholar 

  33. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507. https://doi.org/10.1016/j.jbiotec.2006.05.002

    Article  CAS  PubMed  Google Scholar 

  34. Deshmukh S, Kumar R, Bala K (2019) Microalgae biodiesel: a review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Process Technol 191:232–247. https://doi.org/10.1016/j.fuproc.2019.03.013

    Article  CAS  Google Scholar 

  35. Wang SK, Wang X, Miao J, Tian YT (2018) Tofu whey wastewater is a promising basal medium for microalgae culture. Bioresour Technol 253:79–84. https://doi.org/10.1016/j.biortech.2018.01.012

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Z, Sun D, Wu T, Li Y, Lee Y, Liu J, Chen F (2017) The synergistic energy and carbon metabolism under mixotrophic cultivation reveals the coordination between photosynthesis and aerobic respiration in Chlorella zofingiensis. Algal Res 25:109–116. https://doi.org/10.1016/j.algal.2017.05.007

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 31802323), Natural Science Foundation of Jiangsu Province, China (no. BK20170495), and High-level Talent Support Program of Yangzhou University.

Author information

Authors and Affiliations

Authors

Contributions

YT and XW carried out the experiments, analyzed the data and drafted the manuscript. YC contributed analytic methods. SW designed the experiments, analyzed the data and drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shi-Kai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, YT., Wang, X., Cui, YH. et al. A symbiotic yeast to enhance heterotrophic and mixotrophic cultivation of Chlorella pyrenoidosa using sucrose as the carbon source. Bioprocess Biosyst Eng 43, 2243–2252 (2020). https://doi.org/10.1007/s00449-020-02409-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02409-2

Keywords

Navigation