Skip to main content
Log in

Protective Effect of Kickxia ramosissima (Wall.) Janchn Extracts Against Pathogenic Bacterial Strains and Free Radicals

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Plants are the major source of a wide array of antimicrobials and antioxidants. Present study describes the biochemical exploration of the methanol and chloroform extracts of aerial parts of Kickxia ramosissima (Wall.) Janchn. Main objective of study was to verify the antimicrobial and antioxidant value of its extracts. The crude extracts were subjected to different biological activities to explore the traditional medicinal potential of this herb. Antibacterial and antifungal activities were determined by using agar well diffusion and tube dilution assays, respectively, while antioxidant activity was investigated by DPPH free radical scavenging assay, phosphomolybdate assay and reducing power assay. The results indicated that both the extracts of aerial parts showed varied degree of antimicrobial, antifungal and antioxidant activities. Overall, the methanol extract showed comparatively better activities in various assays. It revealed significantly higher activity against all the tested bacterial strains (Pseudomonas spp. > Staphylococcus aureus > Staphylococcus epidermidis > Klebsiella pneumoniae > Escherichia coli). A maximum fungicidal activity (54.8%) has shown by methanol extract against Aspergillus terreus. The highest radical scavenging activity by DPPH method was found in case of methanol extracts (49.8% and IC50 228.53 µg ml−1) at 250 µg ml−1. In phosphomolybdate method, the highest activity was shown by methanolic extract (0.459 nm) at same concentration. Similarly, the highest activity evaluated by reducing power assay was 0.521 nm at the highest concentration of 250 µg ml−1. In conclusion, Kickxia ramosissima is a potential candidate for further studies to explore active compounds particularly responsible for antibacterial and antifungal and activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tyers, M.; Wright, G.D.: Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 17(3), 141–155 (2019)

    Article  Google Scholar 

  2. Li, K.M.; Dong, X.; Ma, Y.N.; Wu, Z.H.; Yan, Y.M.; Cheng, Y.X.: Antifungal coumarins and lignans from Artemisia annua. Fitoterapia 134, 323–328 (2019)

    Article  Google Scholar 

  3. Yamawaki, C.; Oyama, M.; Yamaguchi, Y.; Ogita, A.; Tanaka, T.; Fujita, K.I.: Curcumin potentiates the fungicidal effect of dodecanol by inhibiting drug efflux in wild-type budding yeast. Lett. Appl. Microbiol. 68, 17–23 (2019)

    Article  Google Scholar 

  4. Giamperi, L.; Bucchini, A.E.A.; Ricci, D.; Papa, F.; Maggi, F.: Essential oil of Achillea ligustica (Asteraceae) as an antifungal agent against phyto pathogenic fungi. Nat. Prod. Commun. 13, 1934578X1801300 (2019)

    Article  Google Scholar 

  5. Dijksterhuis, J.: Fungal spores: highly variable and stress resistant vehicles for distribution and spoilage. Food Microbiol. 81, 2–11 (2019)

    Article  Google Scholar 

  6. Martins, F.J.; Senra, M.; Caneschi, C.A.; dos-Santos, J.A.; da-Silva, A.D.; Raposo, N.R.B.: New group of azastilbene analogs of resveratrol: synthesis, anticandidal activity and toxicity evaluation. J. King Saud Univ. Sci. 31, 158–163 (2019)

    Article  Google Scholar 

  7. Pandya, P.N.; Aghera, H.B.; Ashok, B.K.: Diuretic activity of Linaria ramosissima (Wall.) Janch. leaves in albino rats. Ayu 33, 576–578 (2012)

    Article  Google Scholar 

  8. Ahmad, M.; Qureshi, R.; Arshad, M.; Khan, M.A.; Zafar, M.: Traditional Herbal remedies used for the treatment of diabetes from District Attock. Pak. J. Bot. 41, 2777–2782 (2009)

    Google Scholar 

  9. Qureshi, R.; Bhatti, G.R.; Memon, R.A.: Ethnomedicinal uses of Herbs from northern part of Nara desert, Pakistan. Pak. J. Bot. 42, 839–851 (2010)

    Google Scholar 

  10. Khan, M.; Hussain, F.; Musharaf, S.: Preliminary floristic range of Tehsil Takht-e-Nasrati Pakistan. Int. J. Biol. Sci. 1, 88–99 (2011)

    Google Scholar 

  11. Vardhana, R.: Direct uses of medicinal plants and their identification, 1st edn. Sarup & Sons, New Delhi (2008)

    Google Scholar 

  12. Modilal, M.R.D.; Sindhu, R.; Latha, R.C.R.; Anandan, R.: Phytochemical and antimicrobial activity of Solanum torvum against respiratory tract pathogens. Acta Sci. Pharm. Sci. 4(1), 62–66 (2020)

    Google Scholar 

  13. Chiavari-Frederico, M.O.; Barbosa, L.N.; Santos, I.C.D.; Silva, G.R.D.; Castro, A.F.D.; Bortolucci, W.D.C.; Barboza, L.N.; Campos, C.F.D.A.A.; Gonçalves, J.E.; Menetrier, J.V.; Jacomassi, E.; Gazim, Z.C.; Wietzikoski, S.; Lívero, F.A.D.R.; Lovat, E.C.W.: Antimicrobial activity of Asteraceae species against bacterial pathogens isolated from postmenopausal women. PLoS ONE 15(1), e0227023 (2020)

    Article  Google Scholar 

  14. An, P.; Yang, X.; Yu, J.; Qi, J.; Ren, X.; Kong, Q.: α-Terpineol and terpene-4-ol, the critical components of tea tree oil, exert antifungal activities in vitro and in vivo against Aspergillus niger in grapes by inducing morphous damage and metabolic changes of fungus. Food Control 98, 4–53 (2019)

    Article  Google Scholar 

  15. Vestergaard, M.; Ingmer, H.: Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents 53, 716–723 (2019)

    Article  Google Scholar 

  16. Bibi, Y.; Nisa, S.; Zia, M.; Waheed, A.; Ahmed, S.; Chaudhary, M.F.: The study of anticancer and antifungal activities of Pistacia integerrima extract in vitro. Indian J. Pharm. Sci. 74(4), 375–379 (2012)

    Article  Google Scholar 

  17. Rafat, A.; Philip, K.; Muniandy, S.: Antioxidant potential and content of phenolic compounds in ethanol extracts of selected parts of Andrographis paniculata. J. Med. Plants Stud. 40(3), 197–202 (2010)

    Google Scholar 

  18. Brand-Williams, W.; Cuvelier, M.E.; Berset, C.: Use of free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28(1), 25–30 (1995)

    Article  Google Scholar 

  19. Prieto, P.; Pineda, M.; Aguilar, M.: Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269(2), 337–341 (1999)

    Article  Google Scholar 

  20. Oyaizu, M.: Antioxidant activity of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 35, 771–775 (1986)

    Article  Google Scholar 

  21. Iqbal, E.; Salim, K.A.; Lim, L.B.: Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. J. King Saud Univ. Sci. 27(3), 224–232 (2015)

    Article  Google Scholar 

  22. Yadav, R.N.S.; Agarwala, M.: Phytochemical analysis of some medicinal plants. J. Phytol. 3(12), 10–14 (2011)

    Google Scholar 

  23. Steel, R.G.D.; Torrie, J.H.; Dickey, D.A.: Principles and procedures of statistics: a biometrical approach, 3rd edn. McGraw Hill Book Co. Inc., New York (1997)

    Google Scholar 

  24. Arroyo-Esquivel, J.; Sanchez, F.; Barboza, L.A.: Infection model for analyzing biological control of coffee rust using bacterial anti-fungal compounds. Math. Biosci. 307, 13–24 (2019)

    Article  MathSciNet  Google Scholar 

  25. Azizi-Lalabadi, M.; Ehsani, A.; Divband, B.; Alizadeh-Sani, M.: Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci. Rep. 9, 17439 (2019)

    Article  Google Scholar 

  26. Ibáñez-Peinado, D.; Pina-Pérezm, C.; García-Carrión, G.; Martínez, A.; Rodrigo, D.: In vivo antimicrobial activity assessment of a Cauliflower by-product extract against Salmonella typhimurium. Front. Sustain. Food Syst. (2020). https://doi.org/10.3389/fsufs.2020.00008

    Article  Google Scholar 

  27. Nahar, K.; Aziz, S.; Bashar, M.S.; Haque, M.; Al-Reza, S.: Synthesis and characterization of Silver nanoparticles from Cinnamomum tamala leaf extract and its antibacterial potential. Int. J. Nano Dimens. 11(1), 88–98 (2020)

    Google Scholar 

  28. Baek, S.C.; Kang, M.G.; Park, J.E.; Lee, J.P.; Lee, H.; Ryu, H.W.; Park, C.M.; Park, D.; Cho, M.L.; Oh, S.R.; Kim, H.: Osthenol, a prenylated coumarin, as a monoamine oxidase A inhibitor with high selectivity. Bioorganic Med. Chem. Lett. 29, 839–843 (2019)

    Article  Google Scholar 

  29. Amin, P.C.; Maes, L.; Apers, S.; Exarchou, V.; Pieters, L.: Phytochemical and pharmacological investigation of Kickxia ramosissima. Planta Med. (2015). https://doi.org/10.1055/s-0035-1565362

    Article  Google Scholar 

  30. West, B.J.; Palmer, S.K.; Deng, S.; Pal, A.K.: Antimicrobial activity of an iridoid rich extract from Morinda citrifolia fruit. Curr. Res. J. Biol. Sci. 4, 52–54 (2012)

    Google Scholar 

  31. Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L.: Antibacterial activities of flavonoids, structure-activity relationship and mechanism. Curr. Med. Chem. 22, 132–149 (2015)

    Article  Google Scholar 

  32. Karunanidhi, A.; Ghaznavi-Rad, E.; Nathan, J.J.; Joseph, N.; Chigurupati, S.; Fauzi, F.M.; Pichika, M.R.; Hamat, R.A.; Lung, L.T.T.; Belkum, A.V.; Neela, V.: Bioactive 2-(Methyldithio)Pyridine-3-Carbonitrile from Persian Shallot (Allium stipitatum Regel.) exerts broad-spectrum antimicrobial activity. Molecules 24(6), 1003 (2019)

    Article  Google Scholar 

  33. Bangale, S.; Ghotekar, S.: Bio-fabrication of Silver nanoparticles using Rosa Chinensis L. extract for antibacterial activities. Int. J. Nano Dimens. 10, 217–224 (2019)

    Google Scholar 

  34. Dammak, I.; Hamdi, X.; Euch, S.K.E.; Zemni, H.; Mliki, A.; Hassouna, M.; Lasram, S.: Evaluation of antifungal and anti-ochratoxigenic activities of Salvia officinalis, Lavandula dentata and Laurus nobilis essential oils and a major monoterpene constituent 1,8-cineole against Aspergillus carbonarius. Ind. Crops Prod. 128, 85–93 (2019)

    Article  Google Scholar 

  35. Fikry, S.; Khalil, N.; Salama, O.: Chemical profiling, biostatic and biocidal dynamics of Origanum vulgare L essential oil. AMB Express (2019). https://doi.org/10.1186/s13568-019-0764-y

    Article  Google Scholar 

  36. Fatema, S.; Shirsat, M.; Farooqui, M.; Pathan, M.A.: Biosynthesis of Silver nanoparticle using aqueous extract of Saracaasoca leaves, its characterization and antimicrobial activity. Int. J. Nano Dimens. 10, 163–168 (2019)

    Google Scholar 

  37. Meena, H.; Pandey, H.K.; Pandey, P.; Arya, M.C.; Ahmed, Z.: Evaluation of antioxidant activity of two important memory enhancing medicinal plants Baccopa monnieri and Centella asiatica. Ind. J. Pharmacol. 44(1), 114–117 (2012)

    Article  Google Scholar 

  38. Costa, J.; Rodríguez, R.; Garcia-Cela, E.; Medina, A.; Magan, N.; Lima, N.; Battilani, P.; Santos, C.: Overview of fungi and mycotoxin contamination in Capsicum pepper and in its derivatives. Toxins 11, 27 (2019). https://doi.org/10.3390/toxins11010027

    Article  Google Scholar 

  39. Gul, M.; Cali, I.O.; Cansaran, A.; Idil, O.; Kulu, I.; Celikoglu, U.: Evaluation of phytochemical content, antioxidant, antimicrobial activity and DNA cleavage effect of endemic Linaria corifolia Desf (Plantaginaceae). Cogent Chem. 3, 1337293 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Pakistan, for providing financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdul Qayyum or Ahmad Sher.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binish, Z., Bibi, Y., Zahara, K. et al. Protective Effect of Kickxia ramosissima (Wall.) Janchn Extracts Against Pathogenic Bacterial Strains and Free Radicals. Arab J Sci Eng 46, 83–91 (2021). https://doi.org/10.1007/s13369-020-04756-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04756-4

Keywords

Navigation