Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of an extensively drug-resistant Escherichia coli clinical strain harboring mcr-1 and blaNDM-1 in Korea

Abstract

The development of colistin resistance in carbapenem-resistant strains poses a serious public health problem. In this study, we collected 249 carbapenem-resistant Escherichia coli isolates from patients in Seoul in 2018, and screened all isolates for colistin resistance and for the presence of mobile colistin resistance (mcr) genes. Colistin-resistant strains were further analyzed using multilocus sequence typing, antimicrobial susceptibility testing, detection of antibiotic resistance determinants, plasmid transconjugation, and whole-genome sequencing. Three of the 249 carbapenem-resistant isolates were resistant to colistin, and mcr-1 was detected in one isolate (SECR18-0888), which belonged to sequence type 156 and was resistant to all antibiotics tested except tigecycline. The mcr-1.1 gene was located on an ~62 kb self-transferable IncI2 plasmid along with the blaCTX-M-55 gene, and the blaNDM-1, blaTEM, qepA1, and rmtB genes were additionally detected in SECR18-0888. As an extensively drug-resistant E. coli strain producing MCR-1 and NDM-1 was identified in Korea for the first time, continued monitoring of colistin resistance in carbapenem-resistant Enterobacteriaceae should be reinforced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li J, et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis 2006;6:589–601.

    Article  CAS  PubMed  Google Scholar 

  2. Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 2017;30:557–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bialvaei AZ, Samadi Kafil H. Colistin, mechanisms and prevalence of resistance. Curr Med Res Opin 2015;31:707–21.

    Article  CAS  PubMed  Google Scholar 

  4. Giamarellou H. Epidemiology of infections caused by polymyxin-resistant pathogens. Int J Antimicrob Agents. 2016;48:614–21.

    Article  CAS  PubMed  Google Scholar 

  5. Liu YY, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016;16:161–8.

    Article  CAS  PubMed  Google Scholar 

  6. Xavier BB, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016;21 pii 30280.

  7. Yin W, et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. mBio. 2017;8:e00543-17.

  8. Carattoli A, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 2017;22:30589.

  9. Borowiak M, et al. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother 2017;72:3317–24.

    Article  CAS  PubMed  Google Scholar 

  10. AbuOun M, et al. mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother 2017;72:2745–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang YQ, Li YX, Lei CW, Zhang AY, Wang HN. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J Antimicrob Chemother 2018;73:1791–5.

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect 2018;7:122.

    PubMed  PubMed Central  Google Scholar 

  13. Carroll LM, et al. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. mBio. 2019;10:e00853-19.

  14. Wang C, et al. Identification of novel mobile colistin resistance gene mcr-10. Emerg Microbes Infect 2020;9:508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fan R, et al. Retrospective screening and analysis of mcr-1 and blaNDM in Gram-negative bacteria in China, 2010-2019. Front Microbiol 2020;11:121.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Delgado-Blas JF, Ovejero CM, Abadia-Patino L, Gonzalez-Zorn B. Coexistence of mcr-1 and blaNDM-1 in Escherichia coli from Venezuela. Antimicrob Agents Chemother 2016;60:6356–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng B, et al. Coexistence of MCR-1 and NDM-1 in clinical Escherichia coli isolates. Clin Infect Dis 2016;63:1393–5.

    Article  CAS  PubMed  Google Scholar 

  18. Mediavilla JR, et al. Colistin- and carbapenem-resistant Escherichia coli harboring mcr-1 and blaNDM-5, causing a complicated urinary tract infection in a patient from the United States. mBio. 2016;7:e01191-16.

  19. Yao X, Doi Y, Zeng L, Lv L, Liu JH. Carbapenem-resistant and colistin-resistant Escherichia coli co-producing and NDM-9 and MCR-1. Lancet Infect Dis 2016;16:288–9.

    Article  CAS  PubMed  Google Scholar 

  20. Tacao M, et al. mcr-1 and blaKPC-3 in Escherichia coli sequence type 744 after meropenem and colistin therapy, Portugal. Emerg Infect Dis 2017;23:1419–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun J, et al. Co-transfer of blaNDM-5 and mcr-1 by an IncX3-X4 hybrid plasmid in Escherichia coli. Nat Microbiol 2016;1:16176.

    Article  CAS  PubMed  Google Scholar 

  22. Yoon EJ, et al. Detection of mcr-1 plasmids in Enterobacteriaceae isolates from human specimens: Comparison with those in Escherichia coli isolates from livestock in Korea. Ann Lab Med 2018;38:555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park JY, et al. MCR1 and KPC2 co-producing Klebsiella pneumoniae bacteremia: first case in Korea. Infect Chemother 2019;51:399–404.

    Article  PubMed  PubMed Central  Google Scholar 

  24. CLSI. Performance standards for antimicrobial susceptibility testing; Twenty-fourth informational supplement (M100-S24). Wayne, PA: Clinical and Laboratory Standards Institute; 2014.

    Google Scholar 

  25. EUCAST. Clinical breakpoints - bacteria (v 9.0). 2019. http://www.eucast.org/clinical_breakpoints/. Accessed 24 March 2019.

  26. Hu YY, et al. Colistin resistance gene mcr-1 in gut flora of children. Int J Antimicrob Agents. 2017;50:593–7.

    Article  CAS  PubMed  Google Scholar 

  27. Rebelo AR, et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill. 2018;23:17-00672.

  28. Borowiak M, et al. Development of a novel mcr-6 to mcr-9 multiplex PCR and assessment of mcr-1 to mcr-9 occurrence in colistin-resistant Salmonella enterica isolates from environment, feed, animals and food (2011-2018) in Germany. Front Microbiol 2020;11:80.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee H, et al. Establishment of the South Korean national antimicrobial resistance surveillance system, Kor-GLASS, in 2016. Euro Surveill. 2018;23:1700734.

  30. Ciesielczuk H, Hornsey M, Choi V, Woodford N, Wareham DW. Development and evaluation of a multiplex PCR for eight plasmid-mediated quinolone-resistance determinants. J Med Microbiol 2013;62:1823–7.

    Article  CAS  PubMed  Google Scholar 

  31. Fritsche TR, Castanheira M, Miller GH, Jones RN, Armstrong ES. Detection of methyltransferases conferring high-level resistance to aminoglycosides in Enterobacteriaceae from Europe, North America, and Latin America. Antimicrob Agents Chemother 2008;52:1843–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000;66:4555–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carattoli A, et al. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63:219–28.

    Article  CAS  PubMed  Google Scholar 

  34. Johnson TJ, et al. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 2012;68:43–50.

    Article  CAS  PubMed  Google Scholar 

  35. Chen L, et al. Complete nucleotide sequence of a blaKPC-harboring IncI2 plasmid and its dissemination in New Jersey and New York hospitals. Antimicrob Agents Chemother 2013;57:5019–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Antipov D, Korobeynikov A, McLean JS, Pevzner PA. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 2016;32:1009–15.

    Article  CAS  PubMed  Google Scholar 

  37. Luo Q, et al. Molecular epidemiology and colistin resistant mechanism of mcr-positive and mcr-negative clinical isolated Escherichia coli. Front Microbiol 2017;8:2262.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Delannoy S, et al. Characterization of colistin-resistant Escherichia coli isolated from diseased pigs in France. Front Microbiol 2017;8:2278.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee YL, et al. Nationwide surveillance of antimicrobial resistance among clinically important Gram-negative bacteria, with an emphasis on carbapenems and colistin: Results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART) in 2018. Int J Antimicrob Agents. 2019;54:318–28.

    Article  CAS  PubMed  Google Scholar 

  40. Wang Q, et al. Phenotypic and genotypic characterization of carbapenem-resistant Enterobacteriaceae: Data from a longitudinal large-scale CRE study in China (2012-2016). Clin Infect Dis 2018;67:S196–S205.

    Article  CAS  PubMed  Google Scholar 

  41. Kim YA, Yong D, Jeong SH, Lee K. Colistin resistance in Escherichia coli isolates from patients with bloodstream infection in Korea. Ann Lab Med 2017;37:172–3.

    Article  CAS  PubMed  Google Scholar 

  42. Liu C, et al. Antimicrobial resistance in South Korea: a report from the Korean global antimicrobial resistance surveillance system (Kor-GLASS) for 2017. J Infect Chemother 2019;25:845–59.

    Article  CAS  PubMed  Google Scholar 

  43. Zeng X, et al. Comparative genome analysis of an extensively drug-resistant isolate of avian sequence type 167 Escherichia coli strain Sanji with novel in silico serotype O89b:H9. mSystems. 2019;4:e00242-18.

  44. Yang RS, et al. Emergence of NDM-5- and MCR-1-producing Escherichia coli clones ST648 and ST156 from a single muscovy duck (Cairina moschata). Antimicrob Agents Chemother 2016;60:6899–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang R, et al. The prevalence of colistin resistance in Escherichia coli and Klebsiella pneumoniae isolated from food animals in China: coexistence of mcr-1 and blaNDM with low fitness cost. Int J Antimicrob Agents. 2018;51:739–44.

    Article  CAS  PubMed  Google Scholar 

  46. Sun J, Zhang H, Liu YH, Feng Y. Towards understanding MCR-like colistin resistance. Trends Microbiol 2018;26:794–808.

    Article  CAS  PubMed  Google Scholar 

  47. Lee JY, et al. Whole sequences and characteristics of mcr-1-harboring plasmids of Escherichia coli strains isolated from livestock in South Korea. Microb Drug Resist 2018;24:489–92.

    Article  CAS  PubMed  Google Scholar 

  48. Shen P, et al. Detection of an Escherichia coli sequence type 167 strain with two tandem copies of blaNDM-1 in the chromosome. J Clin Microbiol 2017;55:199–205.

    Article  CAS  PubMed  Google Scholar 

  49. Rubin EJ, Herrera CM, Crofts AA, Trent MS. PmrD is required for modifications to Escherichia coli endotoxin that promote antimicrobial resistance. Antimicrob Agents Chemother 2015;59:2051–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lim SK, et al. First detection of the mcr-1 gene in Escherichia coli isolated from livestock between 2013 and 2015 in South Korea. Antimicrob Agents Chemother 2016;60:6991–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oh SS, Song J, Kim J, Shin J. Increasing prevalence of multidrug-resistant mcr-1-positive Escherichia coli isolates from fresh vegetables and healthy food animals in South Korea. Int J Infect Dis 2020;92:53–5.

    Article  CAS  PubMed  Google Scholar 

  52. Roh HJ, et al. Whole-genome analysis of multi-drug-resistant Aeromonas veronii isolated from diseased discus (Symphysodon discus) imported to Korea. J Fish Dis 2019;42:147–53.

    Article  CAS  PubMed  Google Scholar 

  53. Quan J, et al. Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study. Lancet Infect Dis 2017;17:400–10.

    Article  CAS  PubMed  Google Scholar 

  54. Kim S, et al. Characterization of chromosome-mediated colistin resistance in Escherichia coli isolates from livestock in Korea. Infect Drug Resist 2019;12:3291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Seok Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Kim, J.S., Hong, CK. et al. Identification of an extensively drug-resistant Escherichia coli clinical strain harboring mcr-1 and blaNDM-1 in Korea. J Antibiot 73, 852–858 (2020). https://doi.org/10.1038/s41429-020-0350-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0350-1

This article is cited by

Search

Quick links