Skip to main content
Log in

Variational Approximation for Fractional Sturm–Liouville Problem

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider a regular Fractional Sturm–Liouville Problem (FSLP) of order μ (0 < μ < 1). We approximate the eigenvalues and eigenfunctions of the problem using a fractional variational approach. Recently, Klimek et al. [16] presented the variational approach for FSLPs defined in terms of Caputo derivatives and obtained eigenvalues, eigenfunctions for a special range of fractional order 1/2 < μ < 1. Here, we extend the variational approach for the FSLPs and approximate the eigenvalues and eigenfunctions of the FSLP for fractional-order μ (0 < μ < 1). We also prove that the FSLP has countably infinite eigenvalues and corresponding eigenfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abbasbandy, A. Shirzadi, Homotopy analysis method for multiple solutions of the fractional Sturm–Liouville problems. Numer. Algorithms 54, No 4 (2010), 521–53210.1007/s11075-009-9351-7.

    Article  MathSciNet  Google Scholar 

  2. O.P. Agrawal, Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, No 1 (2002), 368–37910.1016/S0022-247X(02)00180-4.

    Article  MathSciNet  Google Scholar 

  3. O.P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A 40, No 24 (2007), 6287, 10.1088/1751-8113/40/24/003.

    Article  MathSciNet  Google Scholar 

  4. O.P. Agrawal, Generalized multiparameters fractional variational calculus. Int. J. Differ. Equ. 2012, (2012), 10.1155/2012/521750.

  5. Q.M. Al-Mdallal, An efficient method for solving fractional Sturm–Liouville problems. Chaos Solitons Fractals 40, No 1 (2009), 183–18910.1016/j.chaos.2007.07.041.

    Article  MathSciNet  Google Scholar 

  6. Q.M. Al-Mdallal, On the numerical solution of fractional Sturm–Liouville problems. Int. J. Comput. Math. 87, No 12 (2010), 2837–284510.1080/00207160802562549.

    Article  MathSciNet  Google Scholar 

  7. R. Almeida, D.F.M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, No 3 (2011), 1490–150010.1016/j.cnsns.2010.07.016.

    Article  MathSciNet  Google Scholar 

  8. W.O. Amrein, A.M. Hinz, D.B. Pearson, Sturm–Liouville Theory: Past and Present. Birkhäuser Basel, (2005).

    Book  Google Scholar 

  9. W. Deng, Z. Zhang, Variational formulation and efficient implementation for solving the tempered fractional problems. Numer. Methods Partial Differential Equations 34, No 4 (2018), 1224–125710.1002/num.22254.

    Article  MathSciNet  Google Scholar 

  10. I.M. Gelfand, S.V. Fomin, Calculus of Variations. Dover Publications Inc. New York, (2000).

    MATH  Google Scholar 

  11. M.A. Hajji, Q.M. Al-Mdallal, F.M. Allan, An efficient algorithm for solving higher-order fractional Sturm–Liouville eigenvalue problems. J. Comput. Phys. 272, (2014), 550–55810.1016/j.jcp.2014.04.048.

    Article  MathSciNet  Google Scholar 

  12. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Amsterdam, (2006).

    MATH  Google Scholar 

  13. M. Klimek, Fractional sequential mechanics-models with symmetric fractional derivative. Czech. J. Phys. 51, No 12 (2001), 1348–135410.1023/A:1013378221617.

    Article  MathSciNet  Google Scholar 

  14. M. Klimek, O.P. Agrawal, On a regular fractional Sturm—Liouville problem with derivatives of order in (0, 1) Proc. of the 13th International Carpathian Control Conf. Vysoke Tatry, (2012), 284–289; DOI:10.1109/CarpathianCC.2012.6228655.

    Google Scholar 

  15. M. Klimek, O.P. Agrawal, Fractional Sturm–Liouville problem. Comput. Math. Appl. 66, (2013), 795–812; DOI:10.1016/j.camwa.2012.12.011.

    Article  MathSciNet  Google Scholar 

  16. M. Klimek, T. Odzijewicz, A.B. Malinowska, Variational methods for the fractional Sturm–Liouville problem. J. Math. Anal. Appl. 416, No 1 (2014), 402–426; DOI:10.1016/j.jmaa.2014.02.009.

    Article  MathSciNet  Google Scholar 

  17. M. Klimek, A.B. Malinowska, T. Odzijewicz, Applications of the fractional Sturm–Liouville problem to the space-time fractional diffusion in a finite domain. Fract. Calc. Appl. Anal. 19, No 2 (2016), 516–550; DOI:10.1515/fca-2016-0027 https://www.degruyter.com/view/journals/fca/19/2/fca.19.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  18. M. Klimek, M. Ciesielski, T. Blaszczyk, Exact and numerical solutions of the fractional Sturm–Liouville problem. Fract. Calc. Appl. Anal. 21, No 1 (2018), 45–71;DOI:10.1515/fca-2018-0004 https://www.degruyter.com/view/journals/fca/21/1/fca.21.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  19. W. McLean, W.C.H. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press(2000).

    MATH  Google Scholar 

  20. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley New York, (1993).

    MATH  Google Scholar 

  21. T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, Fractional calculus of variations in terms of a generalized fractional integral with applications to physics. Abstr. Appl. Anal. 2012, (2012), 10.1155/2012/871912.

  22. I. Podlubny, Fractional Differential Equations. Academic Press San Diego, (1999).

    MATH  Google Scholar 

  23. F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, No 2 (1996), 1890–1899;DOI:10.1103/PhysRevE.53.1890.

    Article  MathSciNet  Google Scholar 

  24. M. Rivero, J.J. Trujillo, M.P. Velasco, A fractional approach to the Sturm–Liouville problem. Cent. Eur. J. Phys. 11, No 10 (2013), 1246–1254;DOI:10.2478/s11534-013-0216-2.

    Google Scholar 

  25. Y. Tien, Z. Du, W. Ge, Existence results for discrete Sturm–Liouville problem via variational methods. J. Difference Equ. Appl. 13, No 6 (2007), 467–478;DOI:10.1080/10236190601086451.

    Article  MathSciNet  Google Scholar 

  26. B.V. Brunt, The Calculus of Variations. Springer New York, (2004).

    Book  Google Scholar 

  27. M. Zayernouri, G.E. Karniadakis, Fractional Sturm–Liouville eigenproblems: Theory and numerical approximation. J. Comput. Phys. 252, (2013), 495–517;DOI:10.1016/j.jcp.2013.06.031.

    Article  MathSciNet  Google Scholar 

  28. M. Zayernouri, M. Ainsworth, G.E. Karniadakis, Tempered fractional Sturm–Liouville eigenproblems. SIAM J. Sci. Computing 37, No 4 (2015), A1777–A1800;DOI:10.1137/140985536.

    Article  MathSciNet  Google Scholar 

  29. A. Zettl, Sturm–Liouville Theory Math. Surveys Monogr. 121, AMS Providence, RI, (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant K. Pandey.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P.K., Pandey, R.K. & Agrawal, O.P. Variational Approximation for Fractional Sturm–Liouville Problem. Fract Calc Appl Anal 23, 861–874 (2020). https://doi.org/10.1515/fca-2020-0043

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0043

MSC 2010

Key Words and Phrases

Navigation