Skip to main content
Log in

Inverse Problem for a Multi-Term Fractional Differential Equation

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Inverse problem for a family of multi-term time fractional differential equation with non-local boundary conditions is studied. The spectral operator of the considered problem is non-self-adjoint and a bi-orthogonal set of functions is used to construct the solution. The operational calculus approach has been used to obtain the solution of the multi-term time fractional differential equations. Integral type over-determination condition is considered for unique solvability of the inverse problem. Different estimates of multinomial Mittag-Leffler functions alongside Banach fixed point theorem are used to prove the unique local existence of the solution of the inverse problem. Stability of the solution of the inverse problem on the given datum is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Ali, S.A. Malik, An inverse problem for a family of two parameters time fractional diffusion equations with nonlocal boundary conditions. Math. Meth. Appl. Sci. 40, (2018), 7737–7748.

    Article  MathSciNet  Google Scholar 

  2. M. Ali, S. Aziz, S.A. Malik, Inverse problem for a space-time fractional diffusion equation: Application of fractional Sturm-Liouville operator. Math. Meth. Appl. Sci. 41, (2018), 2733–2744.

    Article  MathSciNet  Google Scholar 

  3. M. Ali, S. Aziz, S.A. Malik, Inverse source problem for a space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 21, No 3 (2018), 844–863; DOI:10.1515/fca-2018-0045 https://www.degruyter.com/view/journals/fca/21/3/fca.21.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  4. R. Almeida, N.R.O. Bastos, M.T.T. Monteiro, Modeling some real phenomena by fractional differential equations. Math. Meth. Appl. Sci. 39, (2016), 4846–4855.

    Article  MathSciNet  Google Scholar 

  5. S. Aziz, S.A. Malik, Identification of source term in fourth order parabolic equation. Electr. J. of Diff. Equations 2016, (2016), #293, 20.

    MATH  Google Scholar 

  6. H. Brunner, L. Ling, M. Yamamoto, Numerical simulations of 2D fractional subdiffusion problems. J. of Comput. Physics 229, (2010), 6613–6622.

    Article  MathSciNet  Google Scholar 

  7. M. Ciesielski, M. Klimek, T. Blaszczyk, The fractional Sturm-Liouville problem-Numerical approximation and application in fractional diffusion. J. of Comput. and Appl. Math. 317, (2017), 573–588.

    Article  MathSciNet  Google Scholar 

  8. K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dynamics 71, (2013), 613–619.

    Article  MathSciNet  Google Scholar 

  9. X. Ding, Y. Jiang, Analytical solutions for multi-term time-space coupling fractional delay partial differential equations with mixed boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 68, (2018), 231–247.

    Article  MathSciNet  Google Scholar 

  10. X. Ding, J. J. Nieto, Analytical solutions for multi-term time-space fractional partial differential equations with nonlocal damping. Fract. Calc. Appl. Anal. 21, No 2 (2018), 312–335; DOI:10.1515/fca-2018-0019 https://www.degruyter.com/view/journals/fca/21/2/fca.21.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  11. W. Fan, F. Liu, X. Jiang, I. Turner, Some novel numerical techniques for an inverse problem of the multi-term time fractional partial differential equation. J. of Comput. and Appl. Math. 25, (2017), 1618–1638.

    Google Scholar 

  12. R. Garra, R. Gorenflo, F. Polito, Z. Tomovski, Hilfer-Prabhakar derivatives and some applications. Appl. Math. and Comput. 242, (2014), 576–589.

    MathSciNet  MATH  Google Scholar 

  13. R. Gorenflo, Y. Luchko, Operational method for solving generalized Abel integral of second kind. Integr. Transf. and Spec. Funct. 5, (1997), 47–58.

    Article  MathSciNet  Google Scholar 

  14. E.F.D. Goufo, A biomathematical view on the fractional dynamics of cellulose degradation. Fract. Calc. Appl. Anal. 18, No 3 (2015), 554–564; DOI:10.1515/fca-2015-0034 https://www.degruyter.com/view/journals/fca/18/3/fca.18.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  15. R. Hilfer, Applications of Fractional Calculus in Physics World Scientific Singapore, (2000).

    Book  Google Scholar 

  16. R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 12, No 3 (2009), 299–318at http://www.math.bas.bg/complan/fcaa.

    MathSciNet  MATH  Google Scholar 

  17. V.A. Il’in, How to express basis conditions and conditions for the equiconvergence with trigonometric series of expansions related to non-self-adjoint differential operators. Computers and Math. with Appl. 34, (1997), 641–647.

    Article  MathSciNet  Google Scholar 

  18. V.A. Il’in, L.A. Kritskov, Properties of spectral expansion corresponding to non-self-adjoint differential operators. J. of Math. Sci. 116, (2003), 3489–3550.

    Article  MathSciNet  Google Scholar 

  19. H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Appl. 389, (2012), 1117–1127.

    Article  MathSciNet  Google Scholar 

  20. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations North-Holland Mathematics Studies, Elsevier Science B.V. Amsterdam, (2006).

    MATH  Google Scholar 

  21. M.H. Kim, G.C. Ri, O. Hyong-Chol, Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives. Fract. Calc. Appl. Anal. 17, No 1 (2014), 79–9510.2478/s13540-014-0156-6 https://www.degruyter.com/view/journals/fca/17/1/fca.17.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  22. R. Klages, G. Radons, I.M. Sokolov, Anomalous Transport Willey-VCH Verlag GmbH & Co. KGaA Weinheim, (2008).

    Book  Google Scholar 

  23. Z. Li, Y. Liu, M. Yamamoto, Initial-boundary value problems for multi-term time-fractioanl diffusion equations with positive constnt coefficients. Appl. Math. and Comput. 257, (2015), 381–397.

    MathSciNet  Google Scholar 

  24. Y. Liu, Strong maximum principle for multi-term time-fractional diffusion equations and its application to an inverse source problem. Computers and Math. with Appl. 73, (2017), 96–108.

    Article  MathSciNet  Google Scholar 

  25. C. Li, D. Qian, Y.Q. Chen, On Riemann-Liouville and Caputo derivatives. Discrete Dynam. in Nature and Society (2011), #562494, 15.

    Google Scholar 

  26. Y.F. Luchko, The exact solution of certain differential equations of fractional order by using operational calculus. Computers and Math. with Appl. 29, (1995), 73–85.

    Article  MathSciNet  Google Scholar 

  27. Y. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Cpauto dervatives. Acta Mathematica 24, (1999), 207–233.

    MATH  Google Scholar 

  28. S.Y. Lukashchuk, Conservation laws for time-fractional subdiffusion and diffusion-wave equations. Nonlinear Dyn. 80, (2015), 791–802.

    Article  MathSciNet  Google Scholar 

  29. B.P. Moghaddam, J.A.T. Machado, A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Computers and Math. with Appl. 73, (2017), 1262–1269.

    Article  MathSciNet  Google Scholar 

  30. A.Y. Mokin, On a family of Initial-boundary value problems for the heat equation. Diff. Equations 45, (2009), 126–141.

    Article  MathSciNet  Google Scholar 

  31. A.Y. Mokin, Applications of nonclassical separation of variables to a nonlocal heat problem. Diff. Equations 49, (2013), 59–67.

    Article  MathSciNet  Google Scholar 

  32. I. Podlubny, Fractional Differential Equations Academic Press San Diego, (1999).

    MATH  Google Scholar 

  33. M.S. Salakhitdinov, E.T. Karimov, Direct and inverse source problems for two-term time-fractional difusion equation with Hilfer derivative. Uzb. Math. J. 4, (2017), 140–149.

    Google Scholar 

  34. M.S. Salakhitdinov, E.T. Karimov, Corrigendum to “Direct and inverse source problems for two-term time-fractional difusion equation with Hilfer derivative”[Uzb. Math. J. 4 (2017), 140-149]. Uzb. Math. J. 3, (2018), 139.

    Article  Google Scholar 

  35. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications Gordon and Breach Science Publishers Amsterdam, (1993).

    MATH  Google Scholar 

  36. C. Sun, G. Li, X. Jia, Simultaneous inversion for the diffusion and source coefficients in the multi-term TFDE. Inverse Problems in Sci. and Engin. 336, (2018), 114–126.

    Google Scholar 

  37. H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, (2018), 213–231.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ali.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Aziz, S. & Malik, S.A. Inverse Problem for a Multi-Term Fractional Differential Equation. Fract Calc Appl Anal 23, 799–821 (2020). https://doi.org/10.1515/fca-2020-0040

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0040

MSC 2010

Key Words and Phrases

Navigation