Skip to main content
Log in

“Fuzzy” Calculus: The Link Between Quantum Mechanics and Discrete Fractional Operators

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, based on the “fuzzy” calculus covering the continuous range of operations between two couples of arithmetic operations (+,–) and (×,:), a new form of the fractional integral is proposed occupying an intermediate position between the integral and derivative of the first order. This new form of the fractional integral satisfies the C1 criterion according to the Ross classification. The new calculus is tightly related to the continuous values of the continuous spin S = 1 and can generalize the expression for the fractional values of the shifting discrete index. This calculus can be interpreted as the appearance of the hidden states corresponding to unobservable values of S = 1. Many well-known formulas can be generalized and receive a new extended interpretation. In particular, one can factorize any rectangle matrix and receive the “perfect” filtering formula that allows transforming any (deterministic or random) function to another arbitrary function and vice versa. This transformation can find unexpected applications in data transmission, cryptography and calibration of different gadgets and devices. One can also receive the hybrid (”centaur”) formula for the Fourier (F-) transformation unifying both expressions for the direct and inverse F-transformations in one mathematical unit. The generalized Dirichlet formula, which is obtained in the frame of the new calculus to allow selecting the desired resonance frequencies, will be useful in discrete signals processing, too. The basic formulas are tested numerically on mimic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bellman, Introduction to Matrix Analysis McGraw-Hill Book Co., Inc. New York-Toronto-London, (1960).

    MATH  Google Scholar 

  2. W. Chen, Time-space fabric underlying anomalous diffusion. Chaos Solitons Fractals 28, (2006), 923–929.

    Article  Google Scholar 

  3. F.R. Gantmacher, The Theory of Matrices Chelsea Publishing Co. Providence, (1960).

    Google Scholar 

  4. A.K. Golmankhaneh, D. Baleanu, On a new measure on fractals. J. Inequal. Appl. 522, (2013), 1–9.

    MathSciNet  MATH  Google Scholar 

  5. J. Hadamard, Essai sur l’étude des fonctions, données par leur développement de Taylor. J. Pure Appl. Math. 4, (1892), 101–186.

    MATH  Google Scholar 

  6. R. Hilfer, Applications of Fractional Calculus in Physics World Scientific Publishing New York, (2000).

    Book  Google Scholar 

  7. A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations North-Holland Mathematics Studies, Elsevier Science Amsterdam, (2006).

    MATH  Google Scholar 

  8. V. Kiryakova, Generalized Fractional Calculus and Applications Longman Sci. & Technical, J. Wiley & Sons, Inc. Harlow-New York, (1994).

    MATH  Google Scholar 

  9. R.G. Lyons, Understanding Digital Signal Processing Prentice Hall, Upper Saddle River (2001).

    Google Scholar 

  10. R. Magin, Fractional Calculus in Bioengineering Begell House Inc. Redding, (2006).

    Google Scholar 

  11. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations John Wiley and Sons, Inc. New York, (1993).

    MATH  Google Scholar 

  12. R.R. Nigmatullin, The statistics of the fractional moments: Is there any chance to read “quantitatively” any randomness?. Signal Process 86, No 10 (2006), 2529–2547.

    Article  Google Scholar 

  13. R.R. Nigmatullin, P. Agarval, Direct evaluation of the desired correlations: Verification on real data. Physica A 534, (2019), # 121558, 10.1016/j.physa.2019.121558.

    Article  Google Scholar 

  14. R.R. Nigmatullin, D. Baleanu, New relationships connecting a class of fractal objects and fractional integrals in space. Fract. Calc. Appl. Anal. 16, No 4 (2013), 911–93610.2478/s13540-013-0056-1 https://www.degruyter.comview/journals/fca/16/4/fca.16.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  15. R.R. Nigmatullin, A. Le Mehaute, Is there geometrical/physical meaning of the fractional integral with complex exponent?. J. Non Cryst. Solids 351, No 33–36 (2005), 2888–2899.

    Article  Google Scholar 

  16. R.R. Nigmatullin, P. Lino, G. Maione, F. Saponaro, W. Zhang, The general theory of the quasi-reproducible experiments: How to describe the measured data of complex systems?. Commun. Nonlinear Sci. Numer. Simul. 42, (2017), 324–341.

    Article  Google Scholar 

  17. R.R. Nigmatullin, S.I. Osokin, S.O. Nelson, Application of fractional-moments statistics to data for two-phase dielectric mixtures. IEEE Trans. Dielectr. Electr. Insul. 15, No 5 (2008), 1385–1392.

    Article  Google Scholar 

  18. R.R. Nigmatullin, V.A. Toboev, P. Lino, G. Maione, Reduced fractal model for quantitative analysis of averaged micromotions in mesoscale: Characterization of blow-like signals. Chaos Solitons Fractals 76, (2015), 166–181.

    Article  Google Scholar 

  19. M.D. Ortigueira, Fractional central differences and derivatives. J. Vib. Control 14, (2008), 1255–1266.

    Article  MathSciNet  Google Scholar 

  20. M.D. Ortigueira, J.A. Tenreiro Machado, A critical analysis of the Caputo-Fabrizio operator. Commun. Nonlinear Sci. Numer. Simul. 59, (2018), 608–611.

    Article  MathSciNet  Google Scholar 

  21. M.D. Ortigueira, D. Valério, J.A. Tenreiro Machado, Variable order fractional systems. Commun. Nonlinear Sci. Numer. Simul. 71, (2019), 231–243.

    Article  MathSciNet  Google Scholar 

  22. G. Sales Teodoro, J.A. Tenreiro Machado, E. Capelas de Oliveira, A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 388, (2019), 195–208.

    Article  MathSciNet  Google Scholar 

  23. S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications Gordon and Breach Sci. Publ. London-New York, (1993).

    MATH  Google Scholar 

  24. V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media Nonlinear Physical Science Springer, Berlin-Heidelberg, (2010).

    Book  Google Scholar 

  25. V.V. Uchaikin, Fractional Derivatives for Physicists and Engineers: Background and Theory Nonlinear Physical Science, Springer Berlin-Heidelberg, (2013).

    Book  Google Scholar 

  26. X.-J. Yang, Z.-Z. Zhang, J.A. Tenreiro Machado, D. Baleanu, On local fractional operators view of computational complexity: Diffusion and relaxation defined on cantor sets. Thermal Science 20, (2016), S755–S767.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raoul R. Nigmatullin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigmatullin, R.R., Lino, P. & Maione, G. “Fuzzy” Calculus: The Link Between Quantum Mechanics and Discrete Fractional Operators. Fract Calc Appl Anal 23, 764–786 (2020). https://doi.org/10.1515/fca-2020-0038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0038

MSC 2010

Key Words and Phrases

Navigation