Skip to main content
Log in

Degenerate Kirchhoff (p, q)–Fractional Systems with Critical Nonlinearities

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper deals with the existence of nontrivial solutions for critical possibly degenerate Kirchhoff fractional (p, q) systems. For clarity, the results are first presented in the scalar case, and then extended into the vectorial framework. The main features and novelty of the paper are the (p, q) growth of the fractional operator, the double lack of compactness as well as the fact that the systems can be degenerate. As far as we know the results are new even in the scalar case and when the Kirchhoff model considered is non–degenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Abreu, H.S. Medeiros, Local behaviour and existence of solutions of the fractional (pq)–Laplacian. Submitted paperhttps://arxiv.org/abs/1812.01466.

  2. V. Ambrosio, Concentration phenomena for critical fractional Schrödinger systems. Commun. Pure Appl. Anal. 17, No 5 (2018), 2085–2123.

    Article  MathSciNet  Google Scholar 

  3. V. Ambrosio, Fractional p&q Laplacian problems in ℝN with critical growth. To appear in: Z. Anal. Anwend.https://arxiv.org/abs/1801.10449.

  4. V. Ambrosio, T. Isernia, On a fractional p&q Laplacian problem with critical Sobolev–Hardy exponents. Mediterr. J. Math. 15, No 6 (2018), Art. 21917.

    Google Scholar 

  5. V. Ambrosio, R. Servadei, Supercritical fractional Kirchhoff type problems. Fract. Calc. Appl. Anal. 22, No 5 (2019), 1351–1377; doi:10.1515/fca-2019-0071 https://www.degruyter.com/view/journals/fca/22/5/fca.22.issue-5.xmlview/journals/fca/22/5/fca.22.issue-5.xml.

    Article  MathSciNet  Google Scholar 

  6. G. Autuori, A. Fiscella, P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 125, (2015), 699–714.

    Article  MathSciNet  Google Scholar 

  7. G. Autuori, P. Pucci, Existence of entire solutions for a class of quasilinear elliptic equations. NoDEA Nonlinear Diff. Equations Appl. 20, No 3 (2013), 977–1009.

    Article  MathSciNet  Google Scholar 

  8. G. Autuori, P. Pucci, Elliptic problems involving the fractional Laplacian in RN. J. Diff. Equations 255, No 8 (2013), 2340–2362.

    Article  Google Scholar 

  9. M. Bhakta, D. Mukherjee, Multiplicity results for (pq) fractional elliptic equations involving critical nonlinearities. Adv. Diff. Equations 24, No 3–4 (2019), 185–228.

    MATH  Google Scholar 

  10. L. Brasco, E. Parini, M. Squassina, Stability of variational eigenvalues for the fractional p–Laplacian. Discrete Contin. Dyn. Syst. 36, No 4 (2016), 1813–1845.

    Article  MathSciNet  Google Scholar 

  11. H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functional. Proc. Amer. Math. Soc. 88, No 3 (1983), 486–490.

    Article  MathSciNet  Google Scholar 

  12. L. Caffarelli, J.M. Roquejoffre, O. Savin, Nonlocal minimal surfaces. Comm. Pure Appl. Math. 63, No 9 (2010), 1111–1144.

    MathSciNet  MATH  Google Scholar 

  13. M. Caponi, P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p–Laplacian equations. Ann. Mat. Pura Appl. 195, No 6 (2016), 2099–2129.

    Article  MathSciNet  Google Scholar 

  14. C. Chen, Multiple solutions for a class of quasilinear Schrödinger equations in RN. J. Math. Phys. No 7 56, (2015), # 071507.

  15. W. Chen, M. Squassina, Critical nonlocal systems with concave–convex powers. Adv. Nonlinear Stud. 16, No 4 (2016), 821–842.

    Article  MathSciNet  Google Scholar 

  16. S. Dipierro, M. Medina, E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of ℝn Lecture Notes Scuola Normale Superiore Pisa, 15, viii+158, (2017).

    Google Scholar 

  17. L. D’Onofrio, A. Fiscella, G. Molica Bisci, Perturbation methods for nonlocal Kirchhoff–type problems. Fract. Calc. Appl. Anal. 20, No 4 (2017), 829–85310.1515/fca-2017-0044 https://www.degruyter.com/view/journals/fca/20/4/fca.20.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  18. H. Fan, Multiple positive solutions for a fractional elliptic system with critical nonlinearities. Bound. Value Probl. 2016, (2016), # 19618.

    Article  MathSciNet  Google Scholar 

  19. L.F.O. Faria, O.H. Miyagaki, Critical Brezis-Nirenberg problem for nonlocal systems. Topol. Methods Nonlinear Anal. 50, No 1 (2017), 333–355.

    MathSciNet  MATH  Google Scholar 

  20. L.F.O. Faria, O.H. Miyagaki, F.R. Pereira, M. Squassina, C. Zhang, The Brezis–Nirenberg problem for nonlocal systems. Adv. Nonlinear Anal. 5, No 1 (2016), 85–103.

    MathSciNet  MATH  Google Scholar 

  21. G.M. Figueiredo, Existence of positive solutions for a class of p&q elliptic problems with critical growth on ℝN. J. Math. Anal. Appl. 378, No 2 (2011), 507–518.

    Article  MathSciNet  Google Scholar 

  22. A. Fiscella, P. Pucci, Kirchhoff–Hardy fractional problems with lack of compactness. Adv. Nonlinear Stud. 17, No 3 (2017), 429–456.

    Article  MathSciNet  Google Scholar 

  23. A. Fiscella, P. Pucci, p–fractional Kirchhoff equations involving critical nonlinearities. Nonlinear Anal. Real World Appl. 35, (2017), 350–378.

    Article  MathSciNet  Google Scholar 

  24. A. Fiscella, P. Pucci, (pq) systems with critical terms in ℝN. Nonlinear Anal. 177 Part B (2018). Special Issue Nonlinear PDEs and Geometric Function Theory, in Honor of Carlo Sbordone on his 70th birthday 454–479.

    MATH  Google Scholar 

  25. A. Fiscella, P. Pucci, S. Saldi, Existence of entire solutions for Schrödinger–Hardy systems involving two fractional operators. Nonlinear Anal. 158, (2017), 109–131.

    Article  MathSciNet  Google Scholar 

  26. A. Fiscella, P. Pucci, B. Zhang, p–fractional Hardy–Schrödinger–Kirchhoff systems with critical nonlinearities. Adv. Nonlinear Anal. 8, No 1 (2019), 1111–1131.

    Article  MathSciNet  Google Scholar 

  27. A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, (2014), 156–170.

    Article  MathSciNet  Google Scholar 

  28. Z. Guo, S. Luo, W. Zou, On critical systems involving fractional Laplacian. J. Math. Anal. Appl. 446, No 1 (2017), 681–706.

    Article  MathSciNet  Google Scholar 

  29. X. He, M. Squassina, W. Zou, The Nehari manifold for fractional systems involving critical nonlinearities. Commun. Pure Appl. Anal. 15, No 4 (2016), 1285–1308.

    Article  MathSciNet  Google Scholar 

  30. L. Li, S. Tersian, Fractional problems with critical nonlinearities by a sublinear perturbation. Fract. Calc. Appl. Anal. 23, No 2 (2020), 484–50310.1515/fca-2020-0023 https://www.degruyter.com/view/journals/fca/23/2/fca.23.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  31. S. Liang, J. Zhang, Multiplicity of solutions for the noncooperative Schrödinger–Kirchhoff system involving the fractional p–Laplacian in ℝN. Z. Angew. Math. Phys. 68, No 3 (2017), Art. 6318.

    Article  Google Scholar 

  32. V. Maz’ya, T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195, No 2 (2002), 230–238.

    Article  MathSciNet  Google Scholar 

  33. X. Mingqi, V. Rădulescu, B. Zhang, Combined effects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities. ESAIM Control Optim. Calc. Var. 24, No 3 (2018), 1249–1273.

    Article  MathSciNet  Google Scholar 

  34. P.K. Mishra, K. Sreenadh, Fractional p–Kirchhoff system with sign changing nonlinearities. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. (RACSAM) 111, No 1 (2017), 281–296.

    Article  MathSciNet  Google Scholar 

  35. O.H. Miyagaki, F.R. Pereira, Existence results for non–local elliptic systems with nonlinearities interacting with the spectrum. Adv. Diff. Equations 23, No 7-8 (2018), 555–580.

    MathSciNet  MATH  Google Scholar 

  36. G. Molica Bisci, V. Rădulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems Encyclopedia of Mathematics and its Applications 162, Cambridge University Press Cambridge, (2016).

  37. K. Perera, M. Squassina, Y. Yang, Bifurcation and multiplicity results for critical fractional p–Laplacian problems. Math. Nachr. 289, No 2-3 (2016), 332–342.

    Article  MathSciNet  Google Scholar 

  38. P. Pucci, S. Saldi, Critical stationary Kirchhoff equations in ℝN involving nonlocal operators. Rev. Mat. Iberoam. 32, No 1 (2016), 1–22.

    Article  MathSciNet  Google Scholar 

  39. P. Pucci, M. Xiang, B. Zhang, Multiple solutions for nonhomogenous Schrödinger-Kirchhoff type equations involving the fractional p–Laplacian in ℝN. Calc. Var. Partial Diff. Equations 54, No 3 (2015), 2785–2806.

    Article  Google Scholar 

  40. P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional p–Kirchhoff equations. Adv. Nonlinear Anal. 5, No 1 (2016), 27–55.

    MathSciNet  MATH  Google Scholar 

  41. M. Xiang, B. Zhang, V. Rădulescu, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p–Laplacian. Nonlinearity 29, No 10 (2016), 3186–3205.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Fiscella.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiscella, A., Pucci, P. Degenerate Kirchhoff (p, q)–Fractional Systems with Critical Nonlinearities. Fract Calc Appl Anal 23, 723–752 (2020). https://doi.org/10.1515/fca-2020-0036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0036

MSC 2010

Key Words and Phrases

Navigation