Skip to main content
Log in

On the Possibility of Holographic Recording in the Absence of Coherence between a Reference Beam and a Beam Scattered by an Object

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

For the holographic recording of the wave field of an object, a pattern created by the interference of the reference wave and the wave scattered by the object is used. Traditional holography requires mutual coherence of the reference and object-related beams. However, it has been shown in this work that the holographic recording of information concerning the object under study is possible without coherence between them, even by using radiation from different sources. Such recording can be carried out by employing subcycle or unipolar radiation pulses, when a resonant medium with a large phase memory time T2 is used as the recording medium. In this case, the medium records the interference pattern formed by the subcycle or unipolar pulse reflected from the object and the polarization wave created by the same short pulse. Coherence is ensured by a polarization wave, which interacting with radiation reflected from the object induces a population grating in such a medium. This grating mimics the interference pattern in a similar holographic process with a monochromatic source having the wavelength equal to that corresponding to the resonant transition in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Gabor, Nature (London, U.K.) 161, 777 (1948).

    ADS  Google Scholar 

  2. E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).

    ADS  Google Scholar 

  3. Yu. N. Denisyuk, Opt. Spectrosc. 15, 279 (1963).

    Google Scholar 

  4. Yu. I. Ostrovsky, Holography and Its Application (Nauka, Leningrad, 1970; Mir, Moscow, 1977).

    Google Scholar 

  5. Yu. I. Ostrovsky, M. M. Butusov, and G. V. Ostrovskaya, Interferometry by Holography (Nauka, Moscow, 1977; Springer Ser. Opt. Sci. 20 (1980)).

    Google Scholar 

  6. R. Collier, C. Burckhardt, and L. Lin, Optical Holography (Academic, New York, 1971).

    Google Scholar 

  7. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer, Berlin, Heidelberg, New York, Tokyo, 1981).

    Google Scholar 

  8. I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Phys. Rev. 141, 391 (1966).

    ADS  Google Scholar 

  9. E. I. Shtyrkov, V. S. Lobkov, and N. G. Yarmukhametov, JETP Lett. 27, 648 (1978).

    ADS  Google Scholar 

  10. E. I. Shtyrkov and V. V. Samartsev, in Electromagnetic Superradiance (KF AN SSSR, Kazan, 1975), p. 398 [in Russian].

    Google Scholar 

  11. V. V. Samartsev and E. I. Shtyrkov, Sov. Phys. Solid State 18, 1832 (1976).

    Google Scholar 

  12. E. I. Shtyrkov and V. V. Samartsev, Opt. Spectrosc. 40, 224 (1976).

    ADS  Google Scholar 

  13. E. I. Shtyrkov and V. V. Samartsev, Phys. Status Solidi A 45, 647 (1978).

    ADS  Google Scholar 

  14. L. A. Nefediev and V. V. Samartsev, Phys. Status Solidi A 88, 631 (1985).

    ADS  Google Scholar 

  15. L. A. Nefed’ev, Izv. Akad. Nauk SSSR, Ser. Fiz. 50, 1551 (1986).

    Google Scholar 

  16. L. A. Nefed’ev and V. V. Samartsev, Opt. Spectrosc. 62, 416 (1987).

    ADS  Google Scholar 

  17. E. I. Shtyrkov, Opt. Spectrosc. 114, 96 (2013).

    ADS  Google Scholar 

  18. A. Yu. Parkhomenko and S. V. Sazonov, JETP Lett. 67, 934 (1998).

    ADS  Google Scholar 

  19. A. Yu. Parkhomenko and S. V. Sazonov, Opt. Spectrosc. 90, 707 (2001).

    ADS  Google Scholar 

  20. S. V. Sazonov, Opt. Spectrosc. 94, 400 (2003).

    ADS  Google Scholar 

  21. S. V. Sazonov and A. F. Sobolevskii, J. Exp. Theor. Phys. 96, 807 (2003).

    ADS  Google Scholar 

  22. N. V. Znamenskii and S. V. Sazonov, JETP Lett. 85, 358 (2007).

    ADS  Google Scholar 

  23. N. V. Znamenskii and S. V. Sazonov, Opt. Spectrosc. 104, 378 (2008).

    ADS  Google Scholar 

  24. R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Opt. Lett. 41, 4983 (2016).

    ADS  Google Scholar 

  25. R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Sci. Rep. 7, 12467 (2017).

    ADS  Google Scholar 

  26. R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. V. Pakhomov, and N. N. Rosanov, Quantum Electronics 47, 589 (2017).

    ADS  Google Scholar 

  27. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, I. Babushkin, and N. N. Rosanov, Las. Phys. Lett. 14, 095402 (2017).

    ADS  Google Scholar 

  28. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, Quantum Electron. 49, 958 (2019).

    ADS  Google Scholar 

  29. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, Opt. Spectrosc. 128, 102 (2020).

    ADS  Google Scholar 

  30. H.-C. Wu and J. Meyer-ter-Vehn, Nat. Photon. 6, 304 (2012).

    ADS  Google Scholar 

  31. M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, Nature (London, U.K.) 530, 66 (2016).

    ADS  Google Scholar 

  32. J. Xu, B. Shen, X. Zhang, P. Zhokhov, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, Sci. Rep. 8, 2669 (2018).

    ADS  Google Scholar 

  33. K. Reiman, Rep. Prog. Phys. 70, 1597 (2007).

    ADS  Google Scholar 

  34. H. G. Roskos, M. D. Thomson, M. Kress, and T. Loeffler, Laser Photon. Rev. 1, 349 (2007).

    ADS  Google Scholar 

  35. Y. Gao, T. Drake, Z. Chen, and M. F. De Camp, Opt. Lett. 33, 2776 (2008).

    ADS  Google Scholar 

  36. P. A. Obraztsov, T. Kaplas, S. V. Garnov, M. Kuwata-Gonokami, A. N. Obraztsov, and Y. P. Svirko, Sci. Rep. 4, 4007 (2014).

    ADS  Google Scholar 

  37. E. A. Ponomareva, S. A. Stumpf, A. N. Tcypkin, and S. A. Kozlov, Opt. Lett. 44, 5485 (2019).

    ADS  Google Scholar 

  38. R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, Yu. A. Tolmachev, and N. N. Rosanov, JETP Lett. 105, 408 (2017).

    ADS  Google Scholar 

  39. R. M. Arkhipov, M. V. Arkhipov, A. A. Shimko, A. V. Pakhomov, and N. N. Rosanov, JETP Lett. 110, 15 (2019).

    ADS  Google Scholar 

  40. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics (Pergamon, Oxford, 1974; Nauka, Moscow, 1989).

    Google Scholar 

  41. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

    Google Scholar 

  42. M. Bayer and A. Forchel, Phys. Rev. B 65, 041308 (2002).

    ADS  Google Scholar 

  43. W. R. Babbit and T. Mossberg, Opt. Commun. 65, 185 (1988).

    ADS  Google Scholar 

Download references

Funding

This work in part concerning the generation and application of unipolar light pulses in holography was supported by the Russian Foundation for Basic Research, project no. 20-32-70049. The studies of R.M. Arkhipov on the application of unipolar pulses for the ultrafast control of population gratings were supported by the Russian Science Foundation, project no. 19-72-00012. M.V. Arkhipov acknowledges the support of the Russian Foundation for Basic Research, project no. 20-02-00872_a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. M. Arkhipov, M. V. Arkhipov or N. N. Rosanov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 9, pp. 586–590.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, R.M., Arkhipov, M.V. & Rosanov, N.N. On the Possibility of Holographic Recording in the Absence of Coherence between a Reference Beam and a Beam Scattered by an Object. Jetp Lett. 111, 484–488 (2020). https://doi.org/10.1134/S0021364020090040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020090040

Navigation