Skip to main content
Log in

Comparison of Tomography Methods for Pure and Almost Pure Quantum States

  • Quantum Informatics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Quantum tomography is the most informative tool for estimating the quality of preparation and transformation of quantum states. Its development is crucially necessary for debugging of developed quantum processors. Many existing methods of quantum tomography differ in types of performed measurements and in procedures of their processing. The practical implementation of quantum tomography requires the comparison of different methods, which is complicated because of the absence of a general methodology of estimation. A universal methodology based on numerical experiments has been proposed in this work to estimate the quality of quantum state tomography methods. The developed methodology has been applied to three quantum tomography methods (root approach, compressed sensing, and adaptive tomography) efficiently operating with almost pure states, which is relevant for the current technological foundation of the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Arute, K. Arya, R. Babbush, et al., Nature (London, U.K.) 574, 505 (2019).

    Article  ADS  Google Scholar 

  2. H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, Nature (London, U.K.) 551, 579 (2017).

    Article  ADS  Google Scholar 

  3. K. A. Balygin, V. I. Zaitsev, A. N. Klimov, A. I. Klimov, S. P. Kulik, and S. N. Molotkov, JETP Lett. 105, 606 (2017).

    Article  ADS  Google Scholar 

  4. K. A. Balygin, V. I. Zaitsev, A. N. Klimov, S. P. Kulik, and S. N. Molotkov, JETP Lett. 106, 470 (2017).

    Article  ADS  Google Scholar 

  5. K. Banaszek, M. Cramer, and D. Gross, New J. Phys. 12, 125020 (2013).

    Article  Google Scholar 

  6. G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, Lect. Notes Phys. 649, 1 (2004).

    Article  ADS  Google Scholar 

  7. G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, Adv. Imaging Electron. Phys. 128, 206 (2003).

    Google Scholar 

  8. A. I. Lvovsky and M. G. Raymer, Rev. Mod. Phys. 81, 299 (2009).

    Article  ADS  Google Scholar 

  9. G. I. Struchalin, E. V. Kovlakov, S. S. Straupe, and S. P. Kulik, Phys. Rev. A 98, 032330 (2018).

    Article  ADS  Google Scholar 

  10. J. A. Smolin, J. M. Gambetta, and G. Smith, Phys. Rev. Lett. 108, 070502 (2012).

    Article  ADS  Google Scholar 

  11. M. D. de Burgh, N. K. Langford, A. C. Doherty, and A. Gilchrist, Phys. Rev. A 78, 052122 (2008).

    Article  ADS  Google Scholar 

  12. K. Banaszek, G. M. D’ariano, M. G. A. Paris, and M. F. Sacchi, Phys. Rev. A 78, 052122 (2008).

    Article  Google Scholar 

  13. E. Bolduc, G. C. Knee, E. M. Gauger, and J. Leach, Quantum Inf. 3, 44 (2017).

    Article  Google Scholar 

  14. J. Shang, Z. Zhang, and H. K. Ng, Phys. Rev. A 95, 062336 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  15. Yu. I. Bogdanov, A. K. Gavrichenko, K. S. Kravtsov, S. P. Kulik, E. V. Moreva, and A. A. Soloviev, J. Exp. Theor. Phys. 113, 192 (2011).

    Article  ADS  Google Scholar 

  16. F. Huszár and N. M. T. Houlsby, Phys. Rev. A 85, 052120 (2012).

    Article  ADS  Google Scholar 

  17. E. Bagan, M. A. Ballester, R. D. Gill, R. Munoz-Tapia, and O. Romero-Isart, Phys. Rev. Lett. 97, 130501 (2006).

    Article  ADS  Google Scholar 

  18. S. S. Straupe, JETP Lett. 104, 510 (2016).

    Article  ADS  Google Scholar 

  19. S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, New J. Phys. 14, 095022 (2012).

    Article  ADS  Google Scholar 

  20. Yu. I. Bogdanov, J. Exp. Theor. Phys. 108, 928 (2009).

    Article  ADS  Google Scholar 

  21. I. Bengtsson, AIP Conf. Proc. 889, 40 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Grant and S. Boyd, CVX: Matlab Softwarefor Disciplined Convex Programming, Vers. 2.0 beta. http://cvxr.com/cvx. Accessed September 2013.

  23. M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Inference and Relationship (Charles Griffin, London, 1961), Vol. 2.

    MATH  Google Scholar 

  24. Yu. I. Bogdanov, M. V. Chekhova, L. A. Krivitsky, S. P. Kulik, A. N. Penin, A. A. Zhukov, L. C. Kwek, C. H. Oh, and M. K. Tey, Phys. Rev. A 70, 042303 (2004).

    Article  ADS  Google Scholar 

  25. Quantum Tomography by MLE and Root Approach. https://github.com/PQCLab/Root Tomography. Accessed 2019.

  26. A. Steffens, C. A. Riofrio, W. McCutcheon, I. Roth, B. A. Bell, A. McMillan, M. S. Tame, J. G. Rarity, and J. Eisert, Quantum Sci. Technol. 2, 025005 (2017).

    Article  ADS  Google Scholar 

  27. C. Ferrie, Phys. Rev. Lett. 113, 190404 (2014).

    Article  ADS  Google Scholar 

  28. C. Granade, J. Combes, and D. G. Cory, New J. Phys. 18, 033024 (2016).

    Article  ADS  Google Scholar 

  29. D. Ahn, Y. S. Teo, H. Jeong, F. Bouchard, F. Hufnagel, E. Karimi, D. Koutny, J. Řeháček, Z. Hradil, G. Leuchs, and L. L. Sanchez-Soto, Phys. Rev. Lett. 122, 100404 (2019).

    Article  ADS  Google Scholar 

  30. A. Uhlmann, Phys. Rev. A 62, 032307 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  31. K. Zyczkowski and H.-J. Sommers, J. Phys. A: Math. Gen. 34, 7111 (2001).

    Article  ADS  Google Scholar 

  32. Yu. I. Bogdanov, N. A. Bogdanova, B. I. Bantysh, and Yu. A. Kuznetsov, Proc. SPIE 11022, 110222O (2019).

    Google Scholar 

Download references

Acknowledgments

We are grateful to Gleb Struchalin for stimulating discussions and assistance in the calculations.

Funding

The investigation was supported by Program of the Ministry of Science and Higher Education of Russia (no. 0066-2019-0005) for Valiev Institute of Physics and Technology of RAS

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Bantysh.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 9, pp. 615–622.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bantysh, B.I., Chernyavskiy, A.Y. & Bogdanov, Y.I. Comparison of Tomography Methods for Pure and Almost Pure Quantum States. Jetp Lett. 111, 512–518 (2020). https://doi.org/10.1134/S0021364020090052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020090052

Navigation