Skip to main content
Log in

Admittance of Barrier Structures Based on Mercury Cadmium Telluride

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

The results of studying the admittance of unipolar barrier structures based on HgCdTe grown by molecular beam epitaxy (MBE) on GaAs (013) substrates are presented. Using passivation with an Al2O3 insulator, device nBn structures based on HgCdTe were fabricated. The layer parameters in the created structures provided the possibility of detection in the spectral range of 3–5 μm. Based on the analysis of the frequency dependences of the admittance, an equivalent circuit of nBn structures at small biases is proposed. The dependences of the equivalent circuit parameters on the area of the mesa structure and temperature are determined. The properties of high-temperature maxima in the voltage dependences of the capacitance and conductance of nBn structures, which are presumably related to the recharging of surface states at the heterointerface between the barrier and absorbing layers, are studied. It is found that in a wide range of frequencies and temperatures, the capacitance – voltage characteristics of nBn structures based on HgCdTe at reverse biases can be used to determine the concentration of donor impurities in the absorbing layer. It is shown that the admittance of test MIS devices in a mesa configuration, formed on the basis of the MBE HgCdTe nBn structures, is determined by the combined influence of electronic processes in the contact, barrier, and absorbing layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, Infrared and Terahertz detectors, 3rd. ed., Boca Raton: CRC Press, Taylor & Francis Group (2019).

    Google Scholar 

  2. M. A. Kinch, State-of-the-Art Infrared Detector Technology, SPIE Press, Bellingham, Washington (2014).

    Google Scholar 

  3. C. Lobre, P. H. Jouneau, L. Mollard, et al., J. Electron. Mater., 43, 2908–2914 (2014).

    ADS  Google Scholar 

  4. I. I. Izhnin, K. D. Mynbaev, A. V. Voitsekhovsky, et al., Infrared Phys. Technol., 98, 230–235 (2019).

    ADS  Google Scholar 

  5. A. M. White, Infrared Detectors, U.S. Patent 4697063 (1983).

  6. P. Klipstein, Depletion-Less Photodiode with Suppressed Dark Current and Method for Producing the Same, U.S. Patent 7795640 (2003).

  7. S. Maimon and G. W. Wicks, Appl. Phys. Lett., 89, No. 15, 151109 (2006).

    ADS  Google Scholar 

  8. D. Z. Ting, A. Soibel, A. Khoshakhlagh, et al., Appl. Phys. Lett., 113, 021101 (2018).

    ADS  Google Scholar 

  9. A. Soibel, D. Z. Ting, C. J. Hill, et al., Appl. Phys. Lett., 109, 103505 (2016).

    ADS  Google Scholar 

  10. A. Evirgen, J. Abautret, J. P. Perez, et al., Electron. Lett., 50, 1472–1473 (2014).

    ADS  Google Scholar 

  11. A. Soibel, D. Z. Ting, S. B. Rafol, et al., Appl. Phys. Lett., 114, 161103 (2019).

    ADS  Google Scholar 

  12. N. D. Akhavan, G. A. Umana-Membreno, R. Gu, et al., IEEE Trans. Electron Dev., 63, No. 12, 4811–4818 (2016).

    ADS  Google Scholar 

  13. M. Kopytko, J. Wróbel, K. Jóźwikowski, et al., J. Electron. Mater., 44, No. 1, 158–166 (2015).

    ADS  Google Scholar 

  14. F. Uzgur and S. Kocaman, Infrared Phys. Technol., 97, 123–128 (2019).

    ADS  Google Scholar 

  15. Z. H. Ye, Y. Y. Chen, P. Zhang, et al., Proc. SPIE, 9070, 90701L (2014).

    ADS  Google Scholar 

  16. A. M. Itsuno, J. D. Phillips, and S. Velicu, J. Electron. Mater., 40, No. 8, 1624–1629 (2011).

    ADS  Google Scholar 

  17. P. Martyniuk, M. Kopytko, and A. Rogalski, Opto-Electron. Rev., 22, No. 2, 127–146 (2014).

    ADS  Google Scholar 

  18. A. M. Itsuno, J. D. Phillips, and S. Velicu, Appl. Phys. Lett., 100, No. 16, 161102 (2012).

    ADS  Google Scholar 

  19. S. Velicu, J. Zhao, M. Morley, et al., Proc. SPIE, 8268, 826282X (2012).

  20. O. Gravrand, F. Boulard, A. Ferron, et al., J. Electron. Mater., 44, No. 9, 3069–3075 (2015).

    ADS  Google Scholar 

  21. M. Kopytko, A. Kębłowski, W. Gawron, et al., IEEE Trans. Electron Dev., 61, No. 11, 3803–3807 (2014).

    ADS  Google Scholar 

  22. M. Kopytko and A. Rogalski, Prog. Quant. Electron., 47, 1–18 (2016).

    ADS  Google Scholar 

  23. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Infrared Phys. Technol., 102, 103035 (2019).

    Google Scholar 

  24. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., J. Phys. D: Appl. Phys., 53, No. 5, 055107 (2020).

    ADS  Google Scholar 

  25. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, N. Y. (1982).

    Google Scholar 

  26. S. M. Sze and K. Ng Kwok, Physics of Semiconductor Devices, 3rd ed., Wiley, N. Y. (2007).

    Google Scholar 

  27. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, J. Phys. Chem. Sol., 102, 42–48 (2017).

    Google Scholar 

  28. H. Hirwa, S. Pittner, and V. Wagner, Org. Electron., 24, 303–314 (2015).

    Google Scholar 

  29. D. R. Rhiger, E. P. Smith, B. P. Kolasa, et al., J. Electron. Mater., 45, No. 9, 4646–4653 (2016).

    ADS  Google Scholar 

  30. A. Glasmann, I. Prigozhin, and E. Bellotti, IEEE J. Electron Dev. Soc., 7, 534– 543 (2019).

    Google Scholar 

  31. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, et al., Mater. Res. Expr., 6, No. 11, 116411 (2019).

    ADS  Google Scholar 

  32. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, et al., Russ. Phys. J., 62, No. 5, 818-826 (2019).

    Google Scholar 

  33. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, et al., J. Comm. Technol. Electron., 64, No. 3, 289–293 (2019).

    Google Scholar 

  34. R. Fu and J. Pattison, Opt. Eng., 51, No. 10, 104003 (2012).

    ADS  Google Scholar 

  35. E. R. Zakirov, V. G. Kesler, G. Y. Sidorov, et al., Semicond. Sci. Technol., 34, No. 6, 065007 (2019).

    ADS  Google Scholar 

  36. M. Ershov, H. C. Liu, L. Li, et al., IEEE Trans. Electron. Dev., 45, No. 10, 2196–2206 (1998).

    ADS  Google Scholar 

  37. B. K. Jones, J. Santana, M. McPherson, et al., Sol. State Commun., 107, No. 2, 47–50 (1998).

    ADS  Google Scholar 

  38. N. A. Penin, Semiconductors, 30, No. 4, 340–343 (1996).

    ADS  Google Scholar 

  39. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, et al., Russ. Phys. J., 57, No. 4, 536–544 (2014).

    Google Scholar 

  40. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, et al., Russ. Phys. J., 57, No. 5, 633–641 (2014).

    Google Scholar 

  41. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, et al., Infrared Phys. Technol., 71, 236–241 (2015).

    ADS  Google Scholar 

  42. W. Van Gelder and E. H. Nicollian, J. Electrochem. Soc., 118, 138–141 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voitsekhovskii.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 76–87, March, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.M. et al. Admittance of Barrier Structures Based on Mercury Cadmium Telluride. Russ Phys J 63, 432–445 (2020). https://doi.org/10.1007/s11182-020-02054-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02054-y

Keywords

Navigation