Skip to main content
Log in

Microstructure and Phase Composition of Rhenium and Ruthenium-Alloyed Ni–Al–Co System after Thermal Treatment

  • Published:
Russian Physics Journal Aims and scope

The paper presents the transmission electron microscopy investigations of the microstructure and phase composition of the nickel-based superalloy after high temperature annealing. All states of the superalloy are characterized by the single-crystal structure with [001] crystallographic orientation. The Ni–Al–Co alloy system also contains such elements as Mo, Cr, W, Ta, Re and Ru. The Ni–Al–Co system is studied in four states: initial (after directional crystallization) and after 1000°С annealing during 118, 372 and 1274 hours. The major phases forming the alloy system are γ- and γ′-phases. After annealing for 118 hours, the formation of Al6(Re, Ru) phase is observed. After longer high-temperature annealing new phases occur, such as σ-, δ- and Laves phase. The obtained alloy microstructure is classified into four types: 1) γ′-phase quasi-cuboids with γ-phase layers, 2) ribbon anisotropic microstructure of γ′+ γ-phase, 3) ribbon anisotropic microstructure with σ-phase particles in γ-phase layers, 4) γ-phase with δ-phase and Laves phase inclusions. The introduction of a large amount of various alloying elements and the annealing process modify the crystallographic texture of the superalloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. T. Sims, N. S. Stoloff, and W. C. Hagel, Superalloys II: High-Temperature Materials for Aerospace and Industrial Power. Pt 1 [Russian translation], Metallurgiya, Moscow (1995).

  2. Yu. R. Kolobov, E. N. Kablov, E. V. Kozlov, et al., Structure and Properties of Intermetallic Metals with Nanophase Strengthening [in Russian], MISiS, Moscow (2008).

    Google Scholar 

  3. E. N. Kablov, Aviatsionnye materialy i tekhnologii, No. 1, 3–33 (2015).

  4. V. V. Gerasimov, N. V. Petrushin, and E. M. Visik, Trudy VIAM, No, 3, 3–13 (2015).

  5. E. V. Kozlov, A. N. Smirnov, E. L. Nikonenko, N. A. Popova, and N. A. Koneva, Phase Morphology and Transformations Under Thermal Treatment of Superalloys Based on Ni–Al–Cr and Ni–Al–Co. Global and Concentration Effects [in Russian], Innovatsionnoe mashinostroenie, Moscow (2016).

  6. B. E. Paton, G. B. Stroganov, S. T. Kishkin, et al., Refractoriness of Cast Alloys and Corrosion Protection [in Russian], Naukova dumka, Kiev (1987).

    Google Scholar 

  7. M. Benyoucef, A. Coujou, F. Pettinari-Sturmel, et al., Sādhanā, 28, No. 1–2, 129–146 (2003).

  8. J. Tiley, G. B. Viswanathan, J. Y. Hwang, et al., Mater. Sci. Eng. A, 528, 32–36 (2010).

    Article  Google Scholar 

  9. D. Chatterjee, N. Hazari, N. Das, and R. Mitra, Mater. Sci. Eng. A, 528, 604–613 (2010).

    Article  Google Scholar 

  10. P. Pandey, A. K. Sawant, B. Nithin, et al., Acta Mater., 168, 37–51 (2019).

    Article  Google Scholar 

  11. K. B. Povarova, O. A. Bazyleva, A. A. Drozdov, et al., Materialoved., No. 4, 39–48 (2011).

  12. E. N. Kablov, N. V. Petrushin, M. B. Bronfin, and A. A. Alekseev, Russ. Metall. Met., No. 5, 406–414 (2006).

  13. R. E. Shalin, I. L. Svetlov, E. B. Kachanov, et al., Monocrystals of Nickel Heat Resistant Alloys [in Russian], Mashinostroenie, Moscow (1997).

    Google Scholar 

  14. E. N. Kablov and E. R. Golubovskii, Heat Resistance of Nickel Alloys [in Russian], Mashinostroenie, Moscow (1998).

    Google Scholar 

  15. E. V. Kozlov, E. V. Konovalova, E. L. Nikonenko, et al., Izvestiya RAN. Ser. Fizich., 68, No. 5, 632–635 (2004).

    Google Scholar 

  16. V. P. Buntushkin, K. B. Povarova, O. A. Bannykh, et al., Metally, No. 2, 49–53 (1998).

    Google Scholar 

  17. P. B. Hirsch, A. Howie, R. B. Nicholson, et al., Electron Microscopy of Thin Crystals [Russian translation], Mir, Moscow (1968).

  18. N. A. Koneva, Voprosy materialovedeniya, No. 1 (29), 103–112 (2002).

    Google Scholar 

  19. E. V. Kozlov, N. A. Popova, E. L. Nikonenko, et al., Fundamental’nye problemy sovremennogo materialovedeniya, 2, No. 1, 106–109 (2005).

  20. V. Chernyavskii, Stereology in Metals [in Russian], Metallurgia, Moscow (1977).

    Google Scholar 

  21. N. P. Lyakishev, ed., State-Transition Diagrams of Metal Binary Systems, [in Russian], vol. 1–3, Mashinostroenie, Moscow (1996).

    Google Scholar 

  22. G. V. Kurdyumov, L. M. Utevskii, and R. I. Entin, Transformation in Metals and Steel [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  23. W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys. Pt 2 [Russian translation], Mir, Moscow (1997).

  24. C. M. F. Rae and R. C. Reed, Acta Mater., 49, 4113–4125 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Nikonenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 116–123, March, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonenko, E.L., Popova, N.A. & Koneva, N.A. Microstructure and Phase Composition of Rhenium and Ruthenium-Alloyed Ni–Al–Co System after Thermal Treatment. Russ Phys J 63, 476–483 (2020). https://doi.org/10.1007/s11182-020-02059-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02059-7

Keywords

Navigation