Skip to main content
Log in

Translational X-Ray Tomographic Approach to Narrow-Angle Scanning of Objects

  • OPTICS AND SPECTROSCOPY
  • Published:
Russian Physics Journal Aims and scope

An X-ray tomographic scanning method is proposed based on a combination of the angular and translational approaches. The reconstruction algorithms have been used for simple geometric primitives like the twodimensional Shepp–Logan phantom (standard test specimen) and a specimen in a tomographic experiment. The specimens were reconstructed using rotational, translational, and combined limited-angle tomographic scanning. The applicability and the advantages of the proposed approach have been demonstrated compared to other standard scanning approaches. In addition, it is shown that the proposed approach allows 2D and 3D objects to be reconstructed quickly and efficiently. The quality of visualization is a function of the number of angular and translational positions that determine the experimental scanning time and must be selected individually for each physical object to be scanned. This approach provides a fast and informative analysis of various objects in case of failure of standard approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Hiller, M. Maisl, and L. M. Reindl, Meas. Sci. Technol., 23, 085404 (2012).

    Article  ADS  Google Scholar 

  2. G. Zhao and S. Qin, Sensors, 18 (8), 2524 (2018); https://doi.org/10.3390/s18082524.

    Article  Google Scholar 

  3. M. Sperrin and J. Winder, in: Scientific Basis of the Royal College of Radiologists Fellowship, IOP Publishing (2014), pp. 2-1–2-50; https://doi.org/10.1088/978-0-7503-1058-1ch2.

  4. J. Fu, J. Wang, W. Guo, and P. Peng, Nucl. Instrum. Meth. Phys. Res. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 888, 119–125 (2018); https://doi.org/10.1016/j.nima.2018.01.044.158.

  5. M. Sperrin, S. Christoph, H. Volker, et al., in: 8th Conf. on Industrial Computed Tomography, Wels (2018). https://doi.org/10.1109/TNS.1974.6499235.

  6. I. Vidovszky, Procedia Engineering, Creative Construction Conf. CCC, 196, Primosten (2017), pp. 181–186; https://doi.org/10.1016/j.proeng.2017.07.189.

  7. A. Agrawal, P. Sarkar, Y. Kashyap, et al., J. Nondestruct. Eval., 35, 1–8 (2016); https://doi.org/10.1007/s10921-016-0353-9.

    Article  Google Scholar 

  8. G. A. Cervantes, Technical Fundamentals of Radiology and CT, IOP Publishing, 1-1–1-5 (2016); https://doi.org/10.1088/978-0-7503-1212-7ch1.

  9. G. T. Herman, in: Computer Graphics Companion, Macmillan Press Ltd. (2002), Chapter Computerized Tomography, pp. 192–197.

  10. M. Browne, in: Shaum’s Outlines, Physics for Engineering and Science, McGraw-Hill Education Professional (2010), Chapter 36, p. 382.

  11. A. H. Ozdiev, Key Eng. Mater., 743, 445–448 (2017); https://doi.org/10.4028/www.scientific.net/KEM.743.445.

    Article  Google Scholar 

  12. A. H. Ozdiev, B. K. Afornu, and D. A. Sednev, Res. Nondestruct. Eval., 30, No. 3, 179–187 (2019); https://doi.org/10.1080/09349847.2018.1498960.

    Article  ADS  Google Scholar 

  13. T. Schön, T. Fuchs, R. Hanke, and K. Dremel, Med. Phys., 40, No. 8, 081922 (2013).

    Article  Google Scholar 

  14. L. A. Shepp and B. F. Logan, IEEE Trans. Nucl. Sci., 21, 21–43 (1974); https://doi.org/10.1109/TNS.1974.6499235.

    Article  ADS  Google Scholar 

  15. V. Titarenko, IEEE Signal Proc. Lett., 23, 800–804 (2016); https://doi.org/10.1109/LSP.2016.2554363.

    Article  ADS  Google Scholar 

  16. D. M. Pelt and D. Y. Parkinson, Meas. Sci. Technol., 29, 034002 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Ozdiev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 3–9, March, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozdiev, A.H., Lazarev, S.V. Translational X-Ray Tomographic Approach to Narrow-Angle Scanning of Objects. Russ Phys J 63, 345–352 (2020). https://doi.org/10.1007/s11182-020-02043-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02043-1

Keywords

Navigation