Skip to main content
Log in

Two particles in measurement-based quantum heat engine without feedback control

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider two two-level particles (qubits) as the working substances of measurement-based quantum heat engines. A measurement-based quantum heat engine is similar to a quantum Otto heat engine other than a quantum isochoric process is replaced by the quantum measurement. We discuss two identical Bosons case and two interacting particles case, respectively. For two Bosons, we find the efficiency is same to a single-particle case but the work output is enhanced. It tends to classical-like result in low temperature regime and exhibits strong quantum effects in high temperature regime, which is counterintuitive. For two interacting qubits, we show the work done is always suppressed by the coupling. The efficiency can be improved under certain conditions in local measurement case and is same to a single-particle case when Bell measurement is done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Greiner, W., Neise, L., Stöcker, H.: Thermodynamics and Statistical Mechanics. Springer, New York (1995)

    MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Tuncer, A., et al.: Work and heat value of bound entanglement. Quantum Inf. Process 18, 373 (2019)

    ADS  MathSciNet  Google Scholar 

  4. Dağ, C.B., et al.: Temperature control in dissipative cavities by entangled dimers. J. Phys. Chem. C 123, 4035 (2019)

    Google Scholar 

  5. Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862 (2003)

    ADS  Google Scholar 

  6. Turkpence, D., Mustecaplioglu, O.E.: Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic carnot engine. Phys. Rev. E 93, 012145 (2016)

    ADS  Google Scholar 

  7. Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012)

    ADS  Google Scholar 

  8. Rossnagel, J., et al.: Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014)

    ADS  Google Scholar 

  9. Long, R., Liu, W.: Performance of quantum Otto refrigerators with squeezing. Phys. Rev. E 91, 062137 (2015)

    ADS  Google Scholar 

  10. Klaers, J., Faelt, S., Imamoglu, A., Togan, E.: Squeezed thermal reservoirs as a resource for a nanomechanical engine beyond the carnot limit. Phys. Rev. X 7, 031044 (2017)

    Google Scholar 

  11. Zhang, X.Y., Huang, X.L., Yi, X.X.: Quantum Otto heat engine with a non-Markovian reservoir. J. Phys. A 47, 455002 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Thomas, G., Siddharth, N., Banerjee, S., Ghosh, S.: Thermodynamics of non-Markovian reservoirs and heat engines. Phys. Rev. E 97, 062108 (2018)

    ADS  Google Scholar 

  13. Huang, X.-L., Niu, X.-Y., Xiu, X.-M., Yi, X.-X.: Quantum stirling heat engine and refrigerator with single and coupled spin systems. Eur. Phys. J. D 68, 32 (2014)

    ADS  Google Scholar 

  14. Thomas, G., Das, D., Ghosh, S.: Quantum heat engine based on level degeneracy. Phys. Rev. E 100, 012123 (2019)

    ADS  Google Scholar 

  15. Henrich, M.J., Mahler, G., Michel, M.: Driven spin systems as quantum thermodynamic machines: fundamental limits. Phys. Rev. E 75, 051118 (2007)

    ADS  Google Scholar 

  16. Blickle, V., Bechinger, C.: Realization of a micrometre-sized stochastic heat engine. Nat. Phys. 8, 143 (2011)

    Google Scholar 

  17. Abah, O., et al.: Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)

    ADS  Google Scholar 

  18. Fialko, O., Hallwood, D.W.: Isolated quantum heat engine. Phys. Rev. Lett. 108, 085303 (2012)

    ADS  Google Scholar 

  19. Zhang, K., Bariani, F., Meystre, P.: Quantum optomechanical heat engine. Phys. Rev. Lett. 112, 150602 (2014)

    ADS  Google Scholar 

  20. Altintas, F., Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits. Phys. Rev. A, 91, 023816 (2015)

  21. Roßnagel, J., et al.: A single-atom heat engine. Science 352, 325 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Hardal, A.U., Mustecaplioglu, O.E.: Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015)

    ADS  Google Scholar 

  23. Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)

    ADS  MathSciNet  Google Scholar 

  24. Kieu, T.D.: The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)

    ADS  MathSciNet  Google Scholar 

  25. Kieu, T.D.: Quantum heat engines, the second law and Maxwell’s demon. Eur. Phys. J. D 39, 115 (2006)

    ADS  Google Scholar 

  26. Wang, J., Wu, Z., He, J.: Quantum Otto engine of a two-level atom with single-mode fields. Phys. Rev. E 85, 041148 (2012)

    ADS  Google Scholar 

  27. Wang, R., Wang, J., He, J., Ma, Y.: Efficiency at maximum power of a heat engine working with a two-level atomic system. Phys. Rev. E 87, 042119 (2013)

    ADS  Google Scholar 

  28. Yuan, Y., et al.: Coefficient of performance under maximum \(\chi \) criterion in a two-level atomic system as a refrigerator. Phys. Rev. E 90, 052151 (2014)

    ADS  Google Scholar 

  29. Quan, H.T., Zhang, P., Sun, C.P.: Quantum heat engine with multilevel quantum systems. Phys. Rev. E 72, 056110 (2005)

    ADS  Google Scholar 

  30. Wu, F., He, J., Ma, Y., Wang, J.: Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics. Phys. Rev. E 90, 062134 (2014)

    ADS  Google Scholar 

  31. Abah, O., Lutz, E.: Optimal performance of a quantum Otto refrigerator. EPL (Europhysics Letters) 113, 60002 (2016)

    ADS  Google Scholar 

  32. Reid, B., Pigeon, S., Antezza, M., De Chiara, G.: A self-contained quantum harmonic engine. EPL (Europhysics Letters) 120, 60006 (2017)

    ADS  Google Scholar 

  33. Kosloff, R., Rezek, Y.: The quantum harmonic Otto cycle. Entropy 19, 136 (2017)

    ADS  Google Scholar 

  34. Deffner, S.: Efficiency of harmonic quantum Otto engines at maximal power. Entropy 20, 875 (2018)

    ADS  Google Scholar 

  35. Türkpençe, D., Altintas, F.: Coupled quantum Otto heat engine and refrigerator with inner friction. Quantum Inf. Process 18, 255 (2019)

    ADS  Google Scholar 

  36. Hardal, A.U.C., Aslan, N., Wilson, C.M., Mustecaplioglu, O.E.: Quantum heat engine with coupled superconducting resonators. Phys. Rev. E 96, 062120 (2017)

    ADS  Google Scholar 

  37. Wang, J., et al.: Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. Phys. Rev. E 91, 062134 (2015)

    ADS  Google Scholar 

  38. Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83, 031135 (2011)

    ADS  Google Scholar 

  39. Huang, X.L., Liu, Y., Wang, Z., Niu, X.Y.: Special coupled quantum Otto cycles. Eur. Phys. J. Plus 129, 4 (2014)

    ADS  Google Scholar 

  40. Çakmak, S., Türkpençe, D., Altintas, F.: Special coupled quantum Otto and Carnot cycles. Eur. Phys. J. Plus 132, 554 (2017)

    Google Scholar 

  41. Chen, J., Dong, H., Sun, C.-P.: Bose-Fermi duality in a quantum Otto heat engine with trapped repulsive bosons. Phys. Rev. E 98, 062119 (2018)

    ADS  Google Scholar 

  42. Thomas, G., Banik, M., Ghosh, S.: Implications of coupling in quantum thermodynamic machines. Entropy 19, 442 (2017)

    Google Scholar 

  43. Mehta, V., Johal, R.S.: Quantum Otto engine with exchange coupling in the presence of level degeneracy. Phys. Rev. E 96, 032110 (2017)

    ADS  Google Scholar 

  44. Zhang, T., Liu, W.-T., Chen, P.-X., Li, C.-Z.: Four-level entangled quantum heat engines. Phys. Rev. A 75, 062102 (2007)

    ADS  Google Scholar 

  45. Altintas, F., Hardal, A.U., Mustecaplioglu, O.E.: Quantum correlated heat engine with spin squeezing. Phys. Rev. E 90, 032102 (2014)

    ADS  Google Scholar 

  46. Hewgill, A., Ferraro, A., De Chiara, G.: Quantum correlations and thermodynamic performances of two-qubit engines with local and common baths. Phys. Rev. A 98, 042102 (2018)

    ADS  Google Scholar 

  47. Barrios, G.A., Albarrán-Arriagada, F., Cárdenas-López, F.A., Romero, G., Retamal, J.C.: Role of quantum correlations in light-matter quantum heat engines. Phys. Rev. A 96, 052119 (2017)

    ADS  MATH  Google Scholar 

  48. Huang, X.L., Guo, D.Y., Wu, S.L., Yi, X.X.: Multilevel quantum Otto heat engines with identical particles. Quantum Inf. Process 17, 27 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Maxwell’s Demon: Entropy, Information, Computing, edited by H. Rex (Princeton University Press, Princeton, NJ, S. Leff and A. F (1990)

  50. Kim, S.W., Sagawa, T., De Liberato, S., Ueda, M.: Quantum Szilard engine. Phys. Rev. Lett. 106, 070401 (2011)

    ADS  Google Scholar 

  51. Yi, J., Talkner, P., Kim, Y.W.: Single-temperature quantum engine without feedback control. Phys. Rev. E 96, 022108 (2017)

    ADS  Google Scholar 

  52. Das, A., Ghosh, S.: Measurement based quantum heat engine with coupled working medium. Entropy 21, 1131 (2019)

    ADS  Google Scholar 

  53. Pathria, R.K.: Statistical Mechanics, 2nd edn. Elsevier Pte Ltd, Singapore (1997)

    MATH  Google Scholar 

  54. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Guryanova, Y., Friis, N., Huber, M.: Ideal projective measurements have infinite resource costs. Quantum 4, 222 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is supported by NSF of China under Grant Nos. 11975064, 11605024, and 61475033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. L. Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X.L., Yang, A.N., Zhang, H.W. et al. Two particles in measurement-based quantum heat engine without feedback control. Quantum Inf Process 19, 242 (2020). https://doi.org/10.1007/s11128-020-02737-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02737-y

Keywords

Navigation