Skip to main content
Log in

Analysis of efficient quantum multi-proxy signature

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An efficient quantum multi-proxy signature scheme was proposed recently, in which the original signatory Alice distributed her authority to several proxy signatories, and then each proxy signatory can sign the message for her alone. In this work, we give a cryptanalysis on this scheme and then point out an unnoticed problem that the proxy signatory must send the signed message to the verifier when he signs it, which is in conflict with the requirement of digital signatures. Furthermore, this problem will give a good chance for an unreliable proxy signatory to deny his signature on the message. Finally, an improved version is presented, which is more economical and practical with current technology compared with the original scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mambo, M., Usuda, K., Okamoto, E.: Proxy signature: delegation of the power to signmessages. IEICE Trans. Fundam. E79(A(9)), 1338–1353 (1996)

    Google Scholar 

  2. Shi, J.J., Shi, R.H., Tang, Y., et al.: A multiparty quantum proxy group signature scheme for the entangled-state message with quantum Fourier transform. Quantum Inf. Process. 10(5), 653–670 (2011)

    Article  MathSciNet  Google Scholar 

  3. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cai, X.Q., Wei, C.Y.: Cryptanalysis of an inter-bank E-payment protocol based on quantum proxy blind signature. Quant. Inf. Process. 12(4), 1651–1657 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. Du, H.Z., Wen, Q.Y.: Certificateless proxy multi-signature. Inf. Sci. 276, 21–30 (2014)

    Article  MathSciNet  Google Scholar 

  6. Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. China Ser. G Phys. Astron. 51(8), 1079–1088 (2008)

    Article  ADS  Google Scholar 

  7. Qin, H.W., Tang Wallace, K.S., Tso, R.: Efficient quantummulti-proxy signature. Quantum Inf. Process. 18, 53 (2019)

    Article  ADS  Google Scholar 

  8. Cai, Q.Y., Li, W.B.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21, 601–603 (2004)

    Article  ADS  Google Scholar 

  9. Hanaoka, G., Shikata, J., Zheng, Y.L., et al.: Unconditionally secure digital signature schemes admitting transferability. In: Advances in Cryptology, pp. 130–142. Springer, Berlin (2000)

  10. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)

  11. Clarke, P.J., Collins, R.J., Dunjko, V., et al.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun. 3, 1174 (2012)

    Article  ADS  Google Scholar 

  12. Zuo, H.J., Zhang, K.J., Song, T.T.: Security analysis of quantum multi-signature protocol based on teleportation. Quantum Inf. Process. 12(7), 2343–2353 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112, 040502 (2014)

    Article  ADS  Google Scholar 

  14. Collins, R.J., Donaldson, R.J., Vedran, D., et al.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113, 040502 (2014)

    Article  ADS  Google Scholar 

  15. Wallden, P., Dunjko, V., Kent, A., et al.: Quantum digital signatures with quantum key distribution components. Phys. Rev. A 91, 042304 (2015)

    Article  ADS  Google Scholar 

  16. Wang, T.Y., Cai, X.Q., Ren, Y.L., et al.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)

    Article  Google Scholar 

  17. Donaldson, R.J., Collins, R.J., Kleczkowska, K., et al.: Experimental demonstration of kilometer-range quantum digital signatures. Phys. Rev. A 93, 012329 (2016)

    Article  ADS  Google Scholar 

  18. Amiri, R., Wallden, P., Kent, A., et al.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93, 032325 (2016)

    Article  ADS  Google Scholar 

  19. Yin, H.L., Fu, Y., Chen, Z.B.: Practical quantum digital signature. Phys. Rev. A 93, 032316 (2016)

    Article  ADS  Google Scholar 

  20. Collins, R.J., Amiri, R., Fujiwara, M., et al.: Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system. Opt. Lett. 41, 4883–4886 (2016)

    Article  ADS  Google Scholar 

  21. Puthoor, I.V., Amiri, R., Wallden, P., et al.: Measurement-device-independent quantum digital signatures. Phys. Rev. A 94, 022328 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. Wang, T.Y., Ma, J.F., Cai, X.Q.: The postprocessing of quantum digital signatures. Quantum Inf. Process. 16, 19 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Yin, H.L., Fu, Y., Liu, H., et al.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95, 032334 (2017)

    Article  ADS  Google Scholar 

  24. Yin, H.L., Wang, M.L., Tang, Y.L., et al.: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A 95, 042338 (2017)

    Article  ADS  Google Scholar 

  25. Roberts, G.L., Lucamarini, M., Yuan, Z.L., et al.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8, 1098 (2017)

    Article  ADS  Google Scholar 

  26. Arrazola, J.M., Wallden, P., Andersson, E.: Multiparty quantum signature schemes. Quantum Inf. Comput. 6, 0435 (2016)

    MathSciNet  Google Scholar 

  27. Cai, X.Q., Wang, T.Y., Wei, C.Y., et al.: Cryptanalysis of multiparty quantum digital signatures. Quantum Inf. Process. 18(8), 252 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  28. Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for helpful comments on revision. This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 61602232, 61572246, 61902166), the Program for Science & Technology Innovation Research Team in Universities of Henan Province (Grant No. 18IRTSTHN014) and the Project for Teaching Reform and Practice Research of High Education in Henan Province (Grant No. 2019SJGLX094Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TY., Wang, XX., Cai, XQ. et al. Analysis of efficient quantum multi-proxy signature. Quantum Inf Process 19, 241 (2020). https://doi.org/10.1007/s11128-020-02744-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02744-z

Keywords

Navigation