Skip to main content
Log in

Guanosine Neuroprotective Action in Hippocampal Slices Subjected to Oxygen and Glucose Deprivation Restores ATP Levels, Lactate Release and Glutamate Uptake Impairment: Involvement of Nitric Oxide

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Stroke is a major cause of disability and death worldwide. Oxygen and glucose deprivation (OGD) in brain tissue preparations can reproduce several pathological features induced by stroke providing a valuable ex vivo protocol for studying the mechanism of action of neuroprotective agents. Guanosine, an endogenous guanine nucleoside, promotes neuroprotection in vivo and in vitro models of neurotoxicity. We previously showed that guanosine protective effect was mimicked by inhibition of nitric oxide synthases (NOS) activity. This study was designed to investigate the involvement of nitric oxide (NO) in the mechanisms related to the protective role of guanosine in rat hippocampal slices subjected to OGD followed by reoxygenation (OGD/R). Guanosine (100 μM) and the pan-NOS inhibitor, l-NAME (1 mM) afforded protection to hippocampal slices subjected to OGD/R. The presence of NO donors, DETA-NO (800 μM) or SNP (5 μM) increased reactive species production, and abolished the protective effect of guanosine or l-NAME against OGD/R. Guanosine or l-NAME treatment prevented the impaired ATP production, lactate release, and glutamate uptake following OGD/R. The presence of a NO donor also abolished the beneficial effects of guanosine or l-NAME on bioenergetics and glutamate uptake. These results showed, for the first time, that guanosine may regulate cellular bioenergetics in hippocampal slices subjected to OGD/R injury by a mechanism that involves the modulation of NO levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATP:

Adenosine-5′-triphosphate

DCFH:

2′,7′-Dichlorodihydrofluorescein

DETA-NO:

(Z)-1-[N-(2-Aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1,2-diolate

OGD:

Oxygen and glucose deprivation

OGD/R:

Oxygen and glucose deprivation followed by reoxygenation

iNOS:

Inducible nitric oxide synthase

I/R:

Ischemia and reperfusion

KRB:

Krebs–Ringer bicarbonate buffer

L-NAME:

l-NG-nitro-l-arginine methyl ester

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NOS:

Nitric oxide synthase

SNP:

Sodium nitroprusside

14C-2-DG:

[U-14C]-2-deoxy-d-glucose

References

  1. Benjamin EJ et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603

    PubMed  PubMed Central  Google Scholar 

  2. Donnan GA et al (2008) Stroke. Lancet 371(9624):1612–1623

    CAS  PubMed  Google Scholar 

  3. Iadecola C, Alexander M (2001) Cerebral ischemia and inflammation. Curr Opin Neurol 14(1):89–94

    CAS  PubMed  Google Scholar 

  4. Schaller B, Graf R (2004) Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab 24(4):351–371

    PubMed  Google Scholar 

  5. Sommer CJ (2017) Ischemic stroke: experimental models and reality. Acta Neuropathol 133(2):245–261

    PubMed  PubMed Central  Google Scholar 

  6. Holloway PM, Gavins FN (2016) Modeling ischemic stroke in vitro: status quo and future perspectives. Stroke 47(2):561–569

    PubMed  PubMed Central  Google Scholar 

  7. Tasca CI, Dal-Cim T, Cimarosti H (2015) In vitro oxygen-glucose deprivation to study ischemic cell death. Methods Mol Biol 1254:197–210

    CAS  PubMed  Google Scholar 

  8. Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55(3):310–318

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23(3):153–165

    CAS  PubMed  Google Scholar 

  10. Moro MA et al (2004) Role of nitric oxide after brain ischaemia. Cell Calcium 36(3–4):265–275

    CAS  PubMed  Google Scholar 

  11. Almeida A, Moncada S, Bolaños JP (2004) Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol 6(1):45–51

    CAS  PubMed  Google Scholar 

  12. Almeida A et al (2001) Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA 98(26):15294–15299

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Campbell BCV et al (2019) Ischaemic stroke. Nat Rev Dis Primers 5(1):1–22

    Google Scholar 

  14. Dienel GA (2018) Brain glucose metabolism: integration of energetics with function. Physiol Rev 99(1):949–1045

    Google Scholar 

  15. Magistretti P, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19(4):235–249

    CAS  PubMed  Google Scholar 

  16. Schurr A, Gozal E (2011) Aerobic production and utilization of lactate satisfy increased energy demands upon neuronal activation in hippocampal slices and provide neuroprotection against oxidative stress. Front Pharmacol 2:96

    PubMed  Google Scholar 

  17. Castillo X et al (2015) A probable dual mode of action for both l- and d-lactate neuroprotection in cerebral ischemia. J Cereb Blood Flow Metab 35(10):1561–1569

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Magistretti PJ et al (1999) Energy on demand. Science 283(5401):496–497

    CAS  PubMed  Google Scholar 

  19. Bolanos JP (2016) Bioenergetics and redox adaptations of astrocytes to neuronal activity. J Neurochem 139(Suppl 2):115–125

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Voutsinos-Porche B et al (2003) Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37(2):275–286

    CAS  PubMed  Google Scholar 

  21. Grupke S et al (2015) Understanding history, and not repeating it. Neuroprotection for acute ischemic stroke: from review to preview. Clin Neurol Neurosurg 129:1–9

    PubMed  Google Scholar 

  22. Molz S et al (2005) Neurotoxicity induced by glutamate in glucose-deprived rat hippocampal slices is prevented by GMP. Neurochem Res 30(1):83–89

    CAS  PubMed  Google Scholar 

  23. Oleskovicz SP et al (2008) Mechanism of guanosine-induced neuroprotection in rat hippocampal slices submitted to oxygen-glucose deprivation. Neurochem Int 52(3):411–418

    CAS  PubMed  Google Scholar 

  24. Schmidt AP et al (2000) Guanosine and GMP prevent seizures induced by quinolinic acid in mice. Brain Res 864(1):40–43

    CAS  PubMed  Google Scholar 

  25. Decker H et al (2019) Guanosine and GMP increase the number of granular cerebellar neurons in culture: dependence on adenosine A 2A and ionotropic glutamate receptors. Purinergic Signal 15(4):439–450

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmidt AP, Lara DR, Souza DO (2007) Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Ther 116(3):401–416

    CAS  PubMed  Google Scholar 

  27. Lanznaster D et al (2016) Guanosine: a neuromodulator with therapeutic potential in brain disorders. Aging Dis 7(5):657–679

    PubMed  PubMed Central  Google Scholar 

  28. Dal-Cim T et al (2016) Neuroprotection promoted by guanosine depends on glutamine synthetase and glutamate transporters activity in hippocampal slices subjected to oxygen/glucose deprivation. Neurotox Res 29(4):460–468

    CAS  PubMed  Google Scholar 

  29. Dal-Cim T et al (2011) Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca2+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience 183:212–220

    CAS  PubMed  Google Scholar 

  30. Dal-Cim T et al (2013) Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J Neurochem 126(4):437–450

    CAS  PubMed  Google Scholar 

  31. Molz S et al (2011) Neuroprotective effect of guanosine against glutamate-induced cell death in rat hippocampal slices is mediated by the phosphatidylinositol-3 kinase/Akt/glycogen synthase kinase 3β pathway activation and inducible nitric oxide synthase inhibition. J Neurosci Res 89(9):1400–1408

    CAS  PubMed  Google Scholar 

  32. Thomaz DT et al (2016) Guanosine prevents nitroxidative stress and recovers mitochondrial membrane potential disruption in hippocampal slices subjected to oxygen/glucose deprivation. Purinergic Signal 12(4):707–718

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Koellhoffer EC, McCullough LD (2012) The effects of estrogen in ischemic stroke. Transl Stroke Res 4(4):390–401

    PubMed  PubMed Central  Google Scholar 

  34. Hurn PD, Macrae IM (2000) Estrogen as a neuroprotectant in stroke. J Cereb Blood Flow Metab 20(4):631–652

    CAS  PubMed  Google Scholar 

  35. Pocock JM, Nicholls DG (1998) Exocytotic and nonexocytotic modes of glutamate release from cultured cerebellar granule cells during chemical ischaemia. J Neurochem 70(2):806–813

    CAS  PubMed  Google Scholar 

  36. Liu Y et al (1997) Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69(2):581–593

    CAS  PubMed  Google Scholar 

  37. Oliveira IJ et al (2002) Neuroprotective effect of GMP in hippocampal slices submitted to an in vitro model of ischemia. Cell Mol Neurobiol 22(3):335–344

    CAS  PubMed  Google Scholar 

  38. Cazarolli LH et al (2009) Mechanism of action of the stimulatory effect of apigenin-6-C-(2″-O-alpha-l-rhamnopyranosyl)-beta-l-fucopyranoside on 14C-glucose uptake. Chem Biol Interact 179(2–3):407–412

    CAS  PubMed  Google Scholar 

  39. Molz S, Dal-Cim T, Tasca CI (2009) Guanosine-5′-monophosphate induces cell death in rat hippocampal slices via ionotropic glutamate receptors activation and glutamate uptake inhibition. Neurochem Int 55(7):703–709

    CAS  PubMed  Google Scholar 

  40. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83(2):346–356

    CAS  PubMed  Google Scholar 

  41. Lowry OH et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  42. Godínez-Rubí M, Rojas-Mayorquín AE, Ortuño-Sahagún D (2013) Nitric oxide donors as neuroprotective agents after an ischemic stroke-related inflammatory reaction. Oxid Med Cell Longev 2013:297357

    PubMed  PubMed Central  Google Scholar 

  43. Marcillac F et al (2011) Nitric oxide induces the expression of the monocarboxylate transporter MCT4 in cultured astrocytes by a cGMP-independent transcriptional activation. Glia 59(12):1987–1995

    PubMed  Google Scholar 

  44. Khan M et al (2006) Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric Oxide 15(2):114–124

    CAS  PubMed  Google Scholar 

  45. Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20(3):132–139

    CAS  PubMed  Google Scholar 

  46. Patel RAG, McMullen PW (2017) Neuroprotection in the treatment of acute ischemic stroke. Prog Cardiovasc Dis 59(6):542–548

    PubMed  Google Scholar 

  47. Di Liberto V et al (2016) The guanine-based purinergic system: the tale of an orphan neuromodulation. Front Pharmacol 7:158

    PubMed  PubMed Central  Google Scholar 

  48. Chang R et al (2008) Neuroprotective effects of guanosine on stroke models in vitro and in vivo. Neurosci Lett 431(2):101–105

    CAS  PubMed  Google Scholar 

  49. Connell BJ et al (2013) Guanosine protects against reperfusion injury in rat brains after ischemic stroke. J Neurosci Res 91(2):262–272

    CAS  PubMed  Google Scholar 

  50. Rathbone MP et al (2011) Systemic administration of guanosine promotes functional and histological improvement following an ischemic stroke in rats. Brain Res 1407:79–89

    CAS  PubMed  Google Scholar 

  51. Endres M et al (2004) Targeting eNOS for stroke protection. Trends Neurosci 27(5):283–289

    CAS  PubMed  Google Scholar 

  52. Terpolilli NA et al (2012) Inhalation of nitric oxide prevents ischemic brain damage in experimental stroke by selective dilatation of collateral arterioles. Circ Res 110(5):727–738

    CAS  PubMed  Google Scholar 

  53. Bath PM, Krishnan K, Appleton JP (2017) Nitric oxide donors (nitrates), l-arginine, or nitric oxide synthase inhibitors for acute stroke. Cochrane Database Syst Rev 4:CD000398

    PubMed  Google Scholar 

  54. Almeida A et al (2005) Inhibition of mitochondrial respiration by nitric oxide: its role in glucose metabolism and neuroprotection. J Neurosci Res 79(1–2):166–171

    CAS  PubMed  Google Scholar 

  55. Escartin C et al (2006) Neuron-astrocyte interactions in the regulation of brain energy metabolism: a focus on NMR spectroscopy. J Neurochem 99(2):393–401

    CAS  PubMed  Google Scholar 

  56. Vannucci SJ, Seaman LB, Vannucci RC (1996) Effects of hypoxia-ischemia on GLUT1 and GLUT3 glucose transporters in immature rat brain. J Cereb Blood Flow Metab 16(1):77–81

    CAS  PubMed  Google Scholar 

  57. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91(22):10625–10629

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dienel GA, Cruz NF (1993) Synthesis of deoxyglucose-1-phosphate, deoxyglucose-1,6-bisphosphate, and other metabolites of 2-deoxy-d-[14C]glucose in rat brain in vivo: influence of time and tissue glucose level. J Neurochem 60(6):2217–2231

    CAS  PubMed  Google Scholar 

  59. Ralser M et al (2008) A catabolic block does not sufficiently explain how 2-deoxy-d-glucose inhibits cell growth. Proc Natl Acad Sci USA 105(46):17807–17811

    PubMed  PubMed Central  Google Scholar 

  60. Cavalcanti-de-Albuquerque JP et al (2018) Mitochondria-bound hexokinase (mt-HK) activity differ in cortical and hypothalamic synaptosomes: differential role of mt-HK in H2O2 depuration. Mol Neurobiol 55(7):5889–5900

    CAS  PubMed  Google Scholar 

  61. Raju K et al (2015) Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation. Sci Signal 8(384):ra68

    PubMed  PubMed Central  Google Scholar 

  62. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    CAS  PubMed  Google Scholar 

  63. Dal-Cim T et al (2019) Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: involvement of A1 and A2A adenosine receptors and PI3K, MEK, and PKC pathways. Purinergic Signal 15(4):465–476

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang Z et al (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265(5180):1883–1885

    CAS  PubMed  Google Scholar 

  65. Sattler R et al (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284(5421):1845–1848

    CAS  PubMed  Google Scholar 

  66. Jacoby S, Sims RE, Hartell NA (2001) Nitric oxide is required for the induction and heterosynaptic spread of long-term potentiation in rat cerebellar slices. J Physiol 535(Pt 3):825–839

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Dawson VL et al (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88(14):6368–6371

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Almeida A et al (1998) Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion. Brain Res 790(1–2):209–216

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research supported by grants from the Brazilian funding agencies to C.I.T: CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) –INCT for Excitotoxicity and Neuroprotection; CNPq Productivity Fellowship. D.T.T. is recipient of PhD fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior). The authors would like to express their acknowledgments to Dr. A. Latini for her critical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Inês Tasca.

Ethics declarations

Conflict of interest

The authors state no conflicts of interest. All authors have materially participated in the research and/or article preparation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomaz, D.T., Andreguetti, R.R., Binder, L.B. et al. Guanosine Neuroprotective Action in Hippocampal Slices Subjected to Oxygen and Glucose Deprivation Restores ATP Levels, Lactate Release and Glutamate Uptake Impairment: Involvement of Nitric Oxide. Neurochem Res 45, 2217–2229 (2020). https://doi.org/10.1007/s11064-020-03083-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03083-2

Keywords

Navigation