Skip to main content
Log in

Millimeter-Wave Complex Permittivity of Silica/Alumina-Filled Epoxy-Molding Compounds

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Composite materials made of micron-sized oxide particle fillers in an epoxy resin matrix that can be molded into desired shapes are widely used for packaging radiofrequency and microwave-integrated circuits (ICs). To potentially employ these materials with millimeter-wave ICs (MMICs), quantitative knowledge of the composites’ dielectric properties across a broad millimeter-wave band is necessary. Here, we present non-destructive measurements of the complex relative permittivity, εr = ε′ + ″, on some possible MMIC packaging composites consisting of silica and/or alumina microsphere fillers dispersed in an epoxy matrix. Measurements using phase-sensitive transmission over the WR3 and WR5 frequency bands (140 to 325 GHz) show that ε′ ranged from 3.6 for pure silica filler to 7.2 for pure alumina filler, with very little frequency dispersion. In all materials, the loss tangent tanδ = ε″/ε′ was between 0.01 and 0.02 in this frequency range. An analysis using the theory of two-component composites is used to extract the real permittivity of the epoxy resin. The results could be used to model performance of packaged MMICs and to design composites having a tailored value of ε′.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data used for Figs. 2, 3, and 4 are available upon reasonable request to the corresponding author (M. L.).

References

  1. H.-J. Song, “Packages for Terahertz Electronics,” Proc. IEEE 105(6), 1121-1138 (2017). doi:https://doi.org/10.1109/JPROC.2016.2633547

    Article  Google Scholar 

  2. J. Adam, C. S. Chang, J. J. Stankus, M. K. Iyer, and W. T. Chen, “Addressing packaging challenges,” IEEE Circuits and Devices Mag. 18(4), 40-49 (Jul 2002). doi: https://doi.org/10.1109/MCD.2002.1021121

    Article  Google Scholar 

  3. D. Frear, “Packaging Materials,” Springer Handbook of Electronic and Photonic Materials, S. Kasap and P. Capper (Eds.) (Springer International, Switzerland, 2017), ch. 53. doi: https://doi.org/10.1007/978-3-319-48933-9

  4. H. Sasajima, I. Watanabe, M. Takamoto, K. Dakede, S. Itoh, Y. Nishitani, J. Tabei, and T. Mori, “New Development Trend of Epoxy Molding Compound for Encapsulating Semiconductor Chips,” Materials for Advanced Packaging, D. Lu and C. P. Wong (Eds.) (Springer International, Switzerland, 2017), ch. 9. doi: https://doi.org/10.1007/978-3-319-45098-8

  5. J. Castellon, H. N. Nguyen, S. Agnel, A. Toureille, M. Fréchette, S. Savoie, A. Krivda, and L. E. Schmidt, “Electrical Properties Analysis of Micro and Nano Composite Epoxy Resin Materials,” IEEE Trans. Dielectrics & Elec. Insulation 18(3), 651-658 (2011). doi: https://doi.org/10.1109/TDEI.2011.5931049

    Article  Google Scholar 

  6. P. L. Teh,, M. Mariatti, H .M. Akil, K. N. Seetharamu, A. N. R Wagiman, and K. S. Beh, “High Filled Epoxy Composites for Electronic Packaging Applications,” in Proc. 31st IEEE/CPMT International Electronics Manufacturing Technology Symposium, Petaling Jaya, Malaysia, 8-10 November 2006, pp. 275-281. doi: https://doi.org/10.1109/IEMT.2006.4456466

  7. J. Hornak, P. Trnka, P. Kadlec, O. Michal, V. Mentlik, P. Sutta, G. M. Csanyi, and Z. A. Tamus, “Magnesium Oxide Nanoparticles: Dielectric Properties, Surface Functionalization and Improvement of Epoxy-Based Composites Insulating Properties,” Nanomaterials 8(6), 381 (2018). doi: https://doi.org/10.3390/nano8060381

    Article  Google Scholar 

  8. M. Linec and B. Mušic, “The Effects of Silica-Based Fillers on the Properties of Epoxy Molding Compounds,” MDPI Materials 12, art. 1811 (Jun. 2019). doi: https://doi.org/10.3390/ma12111811

  9. . C. W. Lu, D. J. Xie, Z. F. Shi, and W. Ryu, “Electrical and thermal modelling of QFN packages,” in Proc. 3rd Electronics Packaging Tech. Conf., Singapore, 7 Dec. 2000. doi: https://doi.org/10.1109/EPTC. 2000.906399

  10. C. Zweben, “Composites and other advanced materials for electronic packaging thermal management,” in Proc. Intl. Symp. on Advanced Packaging Materials, Processes, Properties and Interfaces, Braselton, GA, USA, 11-14 Mar. 2001. doi: https://doi.org/10.1109/ISAOM.2001.916602

  11. P. Gonon, A. Sylvestre, J. Teysseyre, and C. Prior, “Dielectric properties of epoxy/silica composites used for microlectronic packaging, and their dependence on post-curing,” J. Mater. Sci.: Mater. in Electronics 12, 81-86 (Feb. 2001). doi: https://doi.org/10.1023/A:1011241818209

  12. M. G. Veena, N. M. Renukappa, K. N. Shivakumar and S. Seetharamu, “Dielectric properties of nanosilica filled epoxy nanocomposites,” Sãdhanã 41(4), 407-141 (Apr. 2016). doi: https://doi.org/10.1007/s12046-016-0473-z

    Article  Google Scholar 

  13. H. S. Bakshi, P. R. Byreddy, K. K. O, A. Blanchard, M. Lee, E. Tuncer, and W. Choi, “Low-Cost Packaging of 300 GHz Integrated Circuits With an On-Chip Patch Antenna,” IEEE Antenn. Wireless Prop. Lett. 18(11), 2444-2448 (2019). doi: https://doi.org/10.1109/LAWP.2019.2943371

  14. Y. Y. G. Hoe, Y. G. Jie, V. S. Rao, and M. W. D. Rhee, “Modeling and characterization of the thermal performance of advanced packaging materials in the flip-chip BGA and QFN packages,” in Proc. 14th Electronics Packaging Tech. Conf., Singapore, . 2012. doi: https://doi.org/10.1109/EPTC.2012.6507138

  15. J. Hammler, A. J. Gallant, and C. Balocco, “Free-Space Permittivity Measurement at Terahertz Frequencies With a Vector Network Analyzer,” IEEE Trans. Terahertz Science and Tech. 6(6), 817-823 (2016). doi: https://doi.org/10.1109/TTHZ.2016.2609204

    Article  Google Scholar 

  16. D. M. Pozar, Microwave Engineering, 4th ed. (J. Wiley & Sons: Hoboken, NJ, USA, 2012), ch. 4. isbn: 978-0-470-63155-3

  17. M. Born and E. Wolf, Principles of Optics (7th ed.), (Cambridge Univ. Press, Cambridge, UK, 1999), ch. 7.6. isbn: 978-1-108-47743-7

  18. R. Vautard, P. Yiou, and M. Ghil, “Singular-spectrum analysis: A toolkit for short, noisy chaotic signals,” Physica D 58, 95-126 (1992). doi: https://doi.org/10.1016/0167-2789(92)90103-T

    Article  Google Scholar 

  19. A. M. Nicholson and G. F. Ross, “Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques,” IEEE Trans. Instrum. and Meas. 19(4), 377-382 (1970). doi: https://doi.org/10.1109/TIM.1970.4313932

    Article  Google Scholar 

  20. T. Ghigna, M. Zannoni, M. E. Jones, and A. Simonetto, “Permittivity and permeability of epoxy–magnetite powder composites at microwave frequencies,” J. Appl. Phys. 127, 045102 (2020). doi: https://doi.org/10.1063/1.5128519

    Article  Google Scholar 

  21. M. N. Afsar, “Precision Millimeter-Wave Measurements of Complex Refractive Index, Complex Dielectric Permittivity, and Loss Tangent of Common Polymers,” IEEE Trans. Instrum. Meas. IM-36, 530-536 (1987). doi: https://doi.org/10.1109/TIM.1987.6312733

    Article  Google Scholar 

  22. J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved Technique for Determining Complex Permittivity with the Transmission /Reflection Method,” IEEE Trans. Microw. Theory and Tech. 38(8), 1096-1103 (1990). doi: https://doi.org/10.1109/22.57336

    Article  Google Scholar 

  23. S. Khanal, T. Kiuru, J. Mallat, O. Luukkonen, and A V. Räisänen, “Measurement of Dielectric Properties at 75 - 325 GHz using a Vector Network Analyzer and Full Wave Simulator,” Radioengineering 21(2), 551-556 (Jun 2012).

  24. PTFE/Teflon data sheet (catalog.wshampshire.com/Asset/psg_teflon_ptfe.pdf (Accessed 10 June 2020)).

  25. J. Krupka, J. Breeze, A. Centeno, N. Alford, T. Claussen, and L. Jensen, “Measurements of Permittivity, Dielectric Loss Tangent, and Resistivity of Float-Zone Silicon at Microwave Frequencies,” IEEE Trans. Microw. Theory and Tech. 54(11), 3995-4001 (2006). doi: https://doi.org/10.1109/TMTT.2006.883655

    Article  Google Scholar 

  26. T. Kinasewitz and B. Senitzky, “Investigation of the complex permittivity of n-type silicon at millimeter wavelengths,” J. Appl. Phys. 54(6), 3394-3998 (1983). doi: https://doi.org/10.1063/1.332452

    Article  Google Scholar 

  27. M. N. Afsar and H. Chi, “Millimeter Wave Complex Refractive Index, Complex Dielectric Permittivity and Loss Tangent of Extra High Purity and Compensated Silicon,” Intl. J. Infrared Millimeter Waves 15(7), 1181-1188 (1994). doi: https://doi.org/10.1007/BF02096073

    Article  Google Scholar 

  28. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Optics 46(33), 8118-8133 (2007). doi:https://doi.org/10.1364/AO.46.008118

    Article  Google Scholar 

  29. H. D. Ruan, R. L. Frost, J. T. Kloprogge, and L. Duong, “Far-infrared spectroscopy of alumina phases,” Spectrochimica Acta Part A 58(2), 265-272 (2002). doi: https://doi.org/10.1016/S1386-1425(01)00532-7

    Article  Google Scholar 

  30. D. J. Bergman, “The dielectric constant of a composite material—A problem in classical physics,” Phys. Reports 43(9), 377-407 (1978). doi: https://doi.org/10.1016/0370-1573(78)90009-1

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Elaheh Motaharifar (UTD) for the help setting up the spectrometer, and acknowledge Ben Cook, Juan Herbsommer, Hassan Ali, and Meysam Moallem (all with Texas Instruments) for useful discussions on improving measurement technique and data interpretation.

Code Availability

Not applicable.

Funding

This work was supported by Texas Instruments Inc. Foundational Technology Research Project on High Frequency Microsystems at the Texas Analog Center of Excellence, the University of Texas at Dallas.

Author information

Authors and Affiliations

Authors

Contributions

M. P. M. set up the spectrometer, took the data, and analyzed the data. E. T. made the sample tiles and analyzed the data. M. L. designed the spectrometer, conceived the experiment, and analyzed the data.

Corresponding author

Correspondence to Mark Lee.

Ethics declarations

Conflicts of Interest

M. P. M. and M. L. declare no conflicts of interest or competing interests. E. T. is employed by the funding source, Texas Instruments Inc.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGarry, M.P., Tuncer, E. & Lee, M. Millimeter-Wave Complex Permittivity of Silica/Alumina-Filled Epoxy-Molding Compounds. J Infrared Milli Terahz Waves 41, 1189–1198 (2020). https://doi.org/10.1007/s10762-020-00730-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00730-1

Keywords

Navigation