Skip to main content
Log in

Head errors of syntactic dependency increase neuromagnetic mismatch intensities

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Mismatch-related brain activation in healthy individuals is an important area of neural investigation. Previously, we evaluated sentence-level syntactic dependencies, composed of a head and a dependent between two syntactically related words in head-initial English structures. We demonstrated that prominent mismatch effects were induced by within-category dependent errors when semantic interpretation was preserved. However, the following issues were not addressed: (1) whether head errors of syntactic dependency in head-final structures would elicit large mismatch field (MMF) intensities, and (2) whether an MMF effect of syntactic errors would be seen in the left superior temporal cortex alone. In this study, auditory MMFs were obtained by magnetocephalography (MEG) from healthy Japanese adults (n = 8) who were subjected to a passive auditory oddball paradigm with syntactically legal or illegal utterances and single words in Japanese. The results demonstrate that the source waveforms had significantly higher MMF cortical activation in response to the head error, which involved altered polarity of the predicate. This resulted in a syntactically incorrect and semantically incomprehensible expression, when compared to the syntactically correct expression and the non-structural lexical item. This mismatch effect, with a peak latency of 164 ms, was confined to the anterior region of the left superior temporal cortex. The current results clearly indicate that the representation of syntactic dependency is stored in long-term memory and tends to be activated in automatic auditory processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Auer T, Dewiputri WI, Frahm J, Schweizer R (2018) Higher-order brain areas associated with real-time functional MRI neurofeedback training of the somato-motor cortex. Neuroscience 378:22–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker SE, Edwards R (2012) How many qualitative interviews are enough? In: National Centre for Research Methods Review, Discussion Paper, pp 1–42

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300

    Google Scholar 

  • Blank I, Balewski Z, Mahowald K, Fedorenko E (2016) Syntactic processing is distributed across the language system. Neuroimage 127:307–323

    PubMed  Google Scholar 

  • Boersma P, Weenink D, 2018 Praat: doing phonetics by computer (version 6.0.43). https://www.praat.org/

  • Bozic M, Fonteneau E, Su L, Marslen-Wilson WD (2015) Grammatical analysis as a distributed neurobiological function. Hum Brain Mapp 36:1190–1201

    PubMed  Google Scholar 

  • Brunellière A (2011) Brain response to subject-verb agreement during grammatical priming. Brain Res 1372:70–80

    PubMed  Google Scholar 

  • Chomsky N (2001) Beyond explanatory adequacy. MIT Occasional Pap Linguistics 20:1–20

    Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdate

    Google Scholar 

  • Cohen JD, MacWhinney B, Flatt M, Provost J (1993) PsyScope: a new graphic interactive environment for designing psychology experiments. Behav Res Methods Instrum Comput 25:257–271

    Google Scholar 

  • Coulson S, King J, Kutas M (1998) Expect the unexpected: event-related brain responses of morphosyntactic violations. Lang Cogn Process 13:21–58

    Google Scholar 

  • Cramer AO, van Ravenzwaaij D, Matzke D, Steingroever H, Wetzels R, Grasman RP, Waldorp LJ, Wagenmakers EJ (2016) Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies. Psychon Bull Rev 23:640–647

    PubMed  Google Scholar 

  • Cumming G, Finch S (2005) Inference by eye: confidence intervals and how to read pictures of data. Am Psychol 60:170–180

    PubMed  Google Scholar 

  • Deutsch A, Bentin S (2001) Syntactic and semantic factors in processing gender agreement in Hebrew: evidence from ERPs and eye movements. J Mem Lang 45:200–224

    Google Scholar 

  • Doucet BM, Lam A, Griffin L (2012) Biomedical engineering: neuromuscular electrical stimulation for skeletal muscle function, Yale. J Biol Med 85:201–215

    Google Scholar 

  • Dwivedi AK, Mallawaarachchi I, Alvarado LA (2017) Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method. Stat Med 36:2187–2205

    PubMed  Google Scholar 

  • Dykstra AR, Gutschalk A (2015) Does the mismatch negativity operate on a consciously accessible memory trace? Sci Adv 1:e1500677

    PubMed  PubMed Central  Google Scholar 

  • Erdfelder E, Faul F, Buchner A (1996) GPOWER: a general power analysis program. Behavior Res Methods Instr Comput 28:1–11

    Google Scholar 

  • Escera C, Yago E, Corral MJ, Corbera S, Nuñez MI (2003) Attention capture by auditory significant stimuli: semantic analysis follows attention switching. Eur J Neurosci 18:2408–2412

    PubMed  Google Scholar 

  • Everaert MBH, Huybregts MAC, Chomsky N, Berwick RC, Bolhuis JJ (2015) Structures, not strings: linguistics as part of the cognitive sciences. Trends Cogn Sci 19:729–743

    PubMed  Google Scholar 

  • Fagerland MW (2012) t-tests, non-parametric tests, and large studies – a paradox of statistical practice? BMC Med Res Methodol 12:78

    PubMed  PubMed Central  Google Scholar 

  • Fitz H, Chang F (2019) Language ERPs reflect learning through prediction error propagation. Cogn Psychol. 111:15–52

    PubMed  Google Scholar 

  • Friederici AD (2004) Event-related brain potential studies in language. Curr Neurol Neurosci Rep 6:466–470

    Google Scholar 

  • Friederici AD, Fiebach CJ, Schlesewsky M, Bornkessel ID, von Cramon DY (2006) Processing linguistic complexity and grammaticality in the left frontal cortex. Cereb Cortex 16:1709–1717

    PubMed  Google Scholar 

  • Friederici AD, Pfeifer E, Hahne A (1993) Event-related brain potentials during natural speech processing: effects of semantic, morphological and syntactic violations. Cog Brain Res 1:183–192

    CAS  Google Scholar 

  • Friederici AD, Wang Y, Herrmann CS, Maess B, Oertel U (2000) Localization of early syntactic processes in frontal and temporal cortical areas: a magnetoencephalographic study. Hum Brain Mapp 11:1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fulham WR, Michie PT, Ward PB, Rasser PE, Todd J, Johnston PJ, Thompson PM, Schall U (2014) Mismatch negativity in recent-onset and chronic schizophrenia: a current source density analysis. PLoS ONE 9:e100221

    PubMed  PubMed Central  Google Scholar 

  • Garrido MJ, Kilner JM, Stephan KE, Friston KJ (2009) The mismatch negativity: A review of underlying mechanisms. Clin Neurophysiol 120:453–463

    PubMed  PubMed Central  Google Scholar 

  • Gelman A, Hill J, Yajima M (2009) Why we (usually) don't have to worry about multiple comparisons. J Res Educ Effectiveness 5:189–211

    Google Scholar 

  • Hagoort H (2017) The core and beyond in the language-ready brain. Neurosci Biobehav Rev 81:194–204

    PubMed  Google Scholar 

  • Hämäläinen M (2009) MNE software User’s Guide (version 2.7). In: MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital. Charlestown, MA, USA

  • Hasting AS, Kotz SA (2008) Speeding up syntax: on the relative timing and automaticity of local phrase structure and morphosyntactic processing as reflected in event-related brain potentials. J Cogn Neurosci 20:1207–1219

    PubMed  Google Scholar 

  • Hasting AS, Kotz S, Friederici AD (2007) Setting the stage for automatic syntax processing: the mismatch negativity as an indicator of syntactic priming. J Cogn Neurosci 19:386–400

    PubMed  Google Scholar 

  • Heilbron M, Chait M (2018) Great expectations: is there evidence for predictive coding in auditory cortex? Neuroscience 389:54–73

    CAS  PubMed  Google Scholar 

  • Herrmann B, Maess B, Hasting AS, Friederici AD (2009) Localization of the syntactic mismatch negativity in the temporal cortex: an MEG study. Neuroimage 48:590–600

    PubMed  Google Scholar 

  • Hochberg Y, Tamhane AC (1987) Multiple comparison procedures. Wiley, New York

    Google Scholar 

  • Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC (1998) Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 22:324–333

    CAS  PubMed  Google Scholar 

  • Hudson RA (1984) Word grammar. Blackwell, Oxford

    Google Scholar 

  • Inouchi M, Kubota M, Ferrari P, Roberts TP (2003) Magnetic mismatch fields elicited by vowel duration and pitch changes in Japanese words in humans: comparison between native- and non-speakers of Japanese. Neurosci Lett 353:165–168

    CAS  PubMed  Google Scholar 

  • Inouchi M, Kubota M, Ohta K, Shirahama Y, Takashima A, Horiguchi T, Matsushima E (2004) Human auditory evoked mismatch field amplitudes vary as a function of vowel duration in healthy first-language speakers. Neurosci Lett 366:342–346

    CAS  PubMed  Google Scholar 

  • Inouchi M, Kubota M, Ohta K, Matsushima E, Ferrari P, Scovel T (2008) Neuromagnetic mismatch field (MMF) dependence on the auditory temporal integration window and the existence of categorical boundaries: comparisons between dissyllabic words and their equivalent tones. Brain Res 1232:155–162

    CAS  PubMed  Google Scholar 

  • Jacobsen T, Schröger EE (2003) Measuring duration mismatch negativity. Clin Neurophysiol 114:1133–1143

    PubMed  Google Scholar 

  • Jakuszeit M, Kotz SA, Hasting AS (2013) Generating predictions: lesion evidence on the role of left inferior frontal cortex in rapid syntactic analysis. Cortex 49:2861–2874

    PubMed  Google Scholar 

  • Kang AM, Constable RT, Gore JC, Avrutin S (1999) An event-related fMRI study of implicit phrase-level syntactic and semantic processing. Neuroimage 10:555–561

    CAS  PubMed  Google Scholar 

  • Kay M, Wobbrock J (2014) ARTool: aligned rank transform for nonparametric factorial ANOVAs (R package version 0.10.2). https://github.com/mjskay/ARTool

  • Kirk RE (1996) Practical significance: a concept whose time has come. Educ Psychol Measur 56:746–759

    Google Scholar 

  • Knösche T, Maess B, Friederici A (1999) Processing of syntactic information monitored by brain surface current density mapping based on MEG. Brain Topogr 12:75–87

    PubMed  Google Scholar 

  • Kubota M, Ferrari P, Roberts TP (2003) Magnetoencephalography detection of early syntactic processing in humans: comparison between L1 speakers and L2 learners of English. Neurosci Lett 353:107–110

    CAS  PubMed  Google Scholar 

  • Kubota MM, Ferrari P, Roberts TP (2004) Human neuronal encoding of English syntactic violations as revealed by both L1 and L2 speakers. Neurosci Lett 368:235–240

    CAS  PubMed  Google Scholar 

  • Kubota M, Inouchi M, Ferrari P, Roberts TP (2005) Human magnetoencephalographic evidence of early syntactic responses to c-selection violations of English infinitives and gerunds by L1 and L2 speakers. Neurosci Lett 384:300–304

    CAS  PubMed  Google Scholar 

  • Kubota M, Ono Y, Ishiyama A, Zouridakis G, Papanicolaou AC (2018) Magnetoencephalography reveals mismatch field enhancement from unexpected syntactic category errors in English sentences. Neurosci Lett 662:195–204

    CAS  PubMed  Google Scholar 

  • Lai M, Demuru M, Hillebrand A, Fraschini M (2018) A comparison between scalp- and source-reconstructed EEG networks. Sci Rep 8:12269

    PubMed  PubMed Central  Google Scholar 

  • Maess B, Koelsch S, Gunter TC, Friederici AD (2001) Musical syntax is processed in Broca's area: an MEG study. Nat Neurosci 5:540–545

    Google Scholar 

  • Maldjian JA, Laurienti PJ, Burdette JB, Kraft RA (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19:1233–1239

    PubMed  Google Scholar 

  • Marinkovic K, Cox B, Reid K, Halgren E (2004) Head position in the MEG helmet affects the sensitivity to anterior sources. Neurol Clin Neurophysiol 2004:30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marti S, Dehaene S (2017) Discrete and continuous mechanisms of temporal selection in rapid visual streams. Nat Commun 8:1955

    PubMed  PubMed Central  Google Scholar 

  • Matchin WG (2018) A neuronal retuning hypothesis of sentence-specificity in Broca's area. Psychon Bull Rev 25:1682–1694

    PubMed  PubMed Central  Google Scholar 

  • Matchin W, Brodbeck C, Hammerly C, Lau E (2019) The temporal dynamics of structure and content in sentence comprehension: evidence from fMRI-constrained MEG. Hum Brain Mapp 40:663–678

    PubMed  Google Scholar 

  • Matchin W, Hammerly C, Lau E (2017) The role of the IFG and pSTS in syntactic prediction: evidence from a parametric study of hierarchical structure in fMRI. Cortex 88:106–123

    PubMed  Google Scholar 

  • Mattout J, Phillips C, Penny WD, Rugg MD, Friston KJ (2006) MEG source localization under multiple constraints: an extended Bayesian framework. Neuroimage 30:753–767

    PubMed  Google Scholar 

  • Meulman N, Stowe LA, Sprenger SA, Bresser M, Schmid MS (2014) An ERP study on L2 syntax processing: when do learners fail? Front Psychol 5:1072

    PubMed  PubMed Central  Google Scholar 

  • Michie PT, Malmierca MS, Harms L, Todd J (2016) The neurobiology of MMN and implications for schizophrenia. Biol Psychol 116:90–97

    PubMed  Google Scholar 

  • Molinaro N, Vespignani F, Job R (2008) A deeper reanalysis of a superficial feature: an ERP study on agreement violations. Brain Res 1228:161–176

    CAS  PubMed  Google Scholar 

  • Mosher JC, Leahy RM, Lewis PS (1999) EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng 46:245–259

    CAS  PubMed  Google Scholar 

  • Münte TF, Matzke M, Johannes S (1997) Brain activity associated with syntactic incongruencies in words and pseudo-words. J Cogn Neurosci 9:318–329

    PubMed  Google Scholar 

  • Näätänen R, Sussman ES, Salisbury D, Shafer VL (2014) Mismatch negativity (MMN) as an index of cognitive dysfunction. Brain Topogr 27:451–466

    PubMed  PubMed Central  Google Scholar 

  • Nakagome K, Takazawa S, Kanno O, Hagiwara H, Nakajima H, Itoh K, Koshida I (2001) A topographical study of ERP correlates of semantic and syntactic violations in the Japanese language using the multichannel EEG system. Psychophysiology 38:304–315

    CAS  PubMed  Google Scholar 

  • Neville H, Nicol JL, Barss A, Forster KI, Garrett MF (1991) Syntactically based sentence processing classes: evidence from event-related brain potentials. J Cogn Neurosci 3:151–165

    CAS  PubMed  Google Scholar 

  • Newman RL, Connolly JF, Service E, McIvor K (2003) Influence of phonological expectations during a phoneme deletion task: evidence from event-related brain potentials. Psychophysiology 40(4):640–647

  • Noble WS (2009) How does multiple testing correction work? Nat Biotechnol 27:1135–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Obleser J, Kayser C (2019) Neural entrainment and attentional selection in the listening brain. Trends Cogn Sci 23:913–926

    PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    CAS  PubMed  Google Scholar 

  • Pallier C, Devauchelle AD, Dehaene S (2011) Cortical representation of the constituent structure of sentences. Proc Natl Acad Sci USA 108:2522–2527

    CAS  PubMed  Google Scholar 

  • Pattamadilok C, Dehaene S, Pallier C (2016) A role for left inferior frontal and posterior superior temporal cortex in extracting a syntactic tree from a sentence. Cortex 75:44–55

    PubMed  Google Scholar 

  • Peter V, McArthur G, Thompson WF (2010) Effect of deviance direction and calculation method on duration and frequency mismatch negativity (MMN). Neurosci Lett 482:71–75

    CAS  PubMed  Google Scholar 

  • Pulvermüller F, Assadollahi R (2007) Grammar or serial order? Discrete combinatorial brain mechanisms reflected by the syntactic mismatch negativity. J Cogn Neurosci 19:971–980

    PubMed  Google Scholar 

  • Pulvermüller F, Shtyrov Y (2003) Automatic processing of grammar in the human brain as revealed by the mismatch negativity. Neuroimage 20:159–172

    PubMed  Google Scholar 

  • Rinne T, Alho K, Ilmoniemi RJ, Virtanen J, Näätänen R (2000) Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage 12:14–19

    CAS  PubMed  Google Scholar 

  • Roberts TP, Cannon KM, Tavabi K, Blaskey L, Khan SY, Monroe JF, Qasmieh S, Levy SE, Edgar JC (2011) Auditory magnetic mismatch field latency: a biomarker for language impairment in autism. Biol Psychiatry 70:263–269

    PubMed  PubMed Central  Google Scholar 

  • Romano J, Kromrey JD, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal level data: should we really be using t-test and Cohen’s d for evaluating group differences on the NSSE and other surveys? In: Annual meeting of the Florida Association of Institutional Research

  • Sabri M, Campbell KB (2002) The effects of digital filtering on mismatch negativity in wakefulness and slow-wave sleep. J Sleep Res 11:123–127

    PubMed  Google Scholar 

  • Saunders M, Townsend K (2016) Reporting and justifying the number of interview participants in organisation and workplace research. Br J Manag 27:836–852

    Google Scholar 

  • Schönwiesner M, Novitski N, Pakarinen S, Carlson S, Tervaniemi M, Näätänen R (2007) Heschl's gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. J Neurophysiol 97:2075–2082

    PubMed  Google Scholar 

  • Shtyrov Y, Pulvermüller F, Näätänen R, Ilmoniemi RJ (2003) Grammar processing outside the focus of attention: an MEG study. J Cogn Neurosci 15:1195–1206

    PubMed  Google Scholar 

  • Smith PL, Little DR (2018) Small is beautiful: In defense of the small-N design. Psychon Bull Rev 25:2083–2101

    PubMed  PubMed Central  Google Scholar 

  • Steinberg J, Truckenbrodt H, Jacobsen T (2013) Activation and application of an obligatory phonotactic constraint in German during automatic speech processing is revealed by human event-related potentials. Int J Psychophysiol 77:13–20

    Google Scholar 

  • Steinhauer K, Drury JE (2012) On the early left-anterior negativity (ELAN) in syntax studies. Brain Lang 120:135–162

    PubMed  Google Scholar 

  • Strauss M, Sitt JD, King JR, Elbaz M, Azizi L, Buiatti M (2015) Disruption of hierarchical predictive coding during sleep. Proc Natl Acad Sci USA 112:E1353–E1353

    CAS  PubMed  Google Scholar 

  • Sussman E, Winkler I, Wang W (2003) MMN and attention: competition for deviance detection. Psychophysiology 40:430–435

    PubMed  Google Scholar 

  • Tada M, Kirihara K, Mizutani S, Uka T, Kunii N, Koshiyama D, Fujioka M, Usui K, Nagai T, Araki T, Kasai K (2019) Mismatch negativity (MMN) as a tool for translational investigations into early psychosis: a review. Int J Psychophysiol 145:5–14

    PubMed  Google Scholar 

  • Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011:1–13

    Google Scholar 

  • Tanner D, Morgan-Short K, Luck SJ (2015) How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition. Psychophysiology 52:997–1009

    PubMed  PubMed Central  Google Scholar 

  • Treisman AM (1960) Contextual cues in selective listening. Q J Exper Psychol 12:242–248

    Google Scholar 

  • Tse CY, Rinne T, Ng KK, Penney TB (2013) The functional role of the frontal cortex in pre-attentive auditory change detection. Neuroimage 83:870–879

    PubMed  Google Scholar 

  • van der Lely HK, Pinker S (2014) The biological basis of language: insight from developmental grammatical impairments. Trends Cogn Sci 18:586–595

    PubMed  Google Scholar 

  • van Riemsdijk H, Williams E (1986) Introduction to the theory of grammar. MIT Press, Cambridge

    Google Scholar 

  • Wahl M, Marzinzik F, Friederici AD, Hahne A, Kupsch A, Schneider GH, Saddy D, Curio G, Klostermann F (2008) The human thalamus processes syntactic and semantic language violations. Neuron 59:695–707

    CAS  PubMed  Google Scholar 

  • Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoustics 15:70–73

    Google Scholar 

  • WFU (2019) PickAtlas toolbox version 3.0.4. https://www.nitrc.org/projects/wfu_pickatlas/, https://github.com/ZhenYangCMI/microstate_code/tree/master/spm8/toolbox/WFU_PickAtlas_3.0.4/wfu_pickatlas/MNI_atlas_templates

  • Widmann A, Schröger E, Maess B (2015) Digital filter design for electrophysiological data–a practical approach. J Neurosci Methods 250:34–46

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank JetPub Scientific Communications in the preparation of this manuscript, in accordance with Good Publication Practice (GPP3) guidelines.

Funding

The present project was supported by the Grant-in-Aid for Exploratory Research, The Ministry of Education, Culture, Sports, Science and Technology in Japan [no. 24652132] and the 2016–2017 Seijo University Special Research Grant, both awarded to MK.

Author information

Authors and Affiliations

Authors

Contributions

MK: principal investigator, project administration, conceptualization, research design, sound recording and editing, experimental coding, data collection, data analysis, visualization, resources, writing–original draft and editing, funding acquisition; JM: data analysis, visualization, resources, writing–original draft (sections MEG measurements, MEG data analysis and statistical analysis) and editing; ID and HD: data collection; GZ: conceptualization, experimental coding, resources, writing–editing.

Corresponding author

Correspondence to Mikio Kubota.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Communicated by Melvyn A. Goodale.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubota, M., Matsuzaki, J., Dan, I. et al. Head errors of syntactic dependency increase neuromagnetic mismatch intensities. Exp Brain Res 238, 2137–2160 (2020). https://doi.org/10.1007/s00221-020-05872-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-020-05872-1

Keywords

Navigation