Skip to main content
Log in

Experimental analysis of flow and turbulence in the wake of neighboring emergent vegetation patches with different densities

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Patches of vegetation in natural water bodies grow close to each other and may affect each other’s wake pattern with significant implications on nutrient uptake and local sediment transport. This experimental study analyzed the wakes of two neighboring circular patches of emergent artificial vegetation with different densities, with the tested solid volume fractions being equal to 0.059, 0.114, and 0.188. The neighboring patches were positioned in two different configurations, namely side-by-side (\(L/D=0\) and \(T/D=1.5\)) and staggered (\(L/D=3.5\) and \(T/D=1.5\)) configurations, with D, L, and T denoting the patch diameter, the patches center-to-center longitudinal distance, and the patches center-to-center transverse distance, respectively. Results show that neighboring patches with different densities generated two distinctly different wakes at the near downstream while after 7–10D these two wakes started merging into one. The flow immediately downstream of a patch was not significantly affected by the presence of a neighboring patch and remained similar to that of an isolated patch, besides the wake of the upstream patch in staggered configuration, which was significantly affected by the downstream patch. The solid volume fraction of the neighboring patch determined the flow velocity and turbulence intensity in between the patches, which were much different compared to measurements at the side of an isolated patch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260. https://doi.org/10.1038/387253a0

    Article  Google Scholar 

  2. Dosskey MG, Vidon P, Gurwick NP, Allan CJ, Duval TP, Lowrance R (2010) The role of riparian vegetation in protecting and improving chemical water quality in streams. J Am Water Resour Assoc 46:261–277. https://doi.org/10.1111/j.1752-1688.2010.00419.x

    Article  Google Scholar 

  3. Kemp JL, Harper DM, Crosa GA (2000) The habitat-scale ecohydraulics of rivers. Ecol Eng 16:17–29. https://doi.org/10.1016/s0925-8574(00)00073-2

    Article  Google Scholar 

  4. Gran K, Paola C (2001) Riparian vegetation controls on braided stream dynamics. Water Resour Res 37:3275–3283. https://doi.org/10.1029/2000wr000203

    Article  Google Scholar 

  5. Temmerman S, Bouma TJ, Van de Koppel J, Van der Wal D, De Vries MB, Herman PMJ (2007) Vegetation causes channel erosion in a tidal landscape. Geology 35:631–634. https://doi.org/10.1130/g23502a.1

    Article  Google Scholar 

  6. Kearney WS, Fagherazzi S (2016) Salt marsh vegetation promotes efficient tidal channel networks. Nat Commun 7:12287. https://doi.org/10.1038/ncomms12287

    Article  Google Scholar 

  7. Schwarz C, Gourgue O, van Belzen J, Zhu Z, Bouma TJ, van de Koppel J, Ruessink G, Claude N, Temmerman S (2018) Self-organization of a biogeomorphic landscape controlled by plant life-history traits. Nat Geosci 11:672–677. https://doi.org/10.1038/s41561-018-0180-y

    Article  Google Scholar 

  8. Larsen LG (2019) Multiscale flow-vegetation-sediment feedbacks in low-gradient landscapes. Geomorphology 334:165–193. https://doi.org/10.1016/j.geomorph.2019.03.009

    Article  Google Scholar 

  9. Wright K, Hiatt M, Passalacqua P (2018) Hydrological connectivity in vegetated river deltas: the importance of patchiness below a threshold. Geophys Res Lett 45:10416–10427. https://doi.org/10.1029/2018gl079183

    Article  Google Scholar 

  10. Montgomery JM, Bryan KR, Horstman EM, Mullarney JC (2018) Attenuation of tides and surges by mangroves: contrasting case studies from New Zealand. Water 10:1119. https://doi.org/10.3390/w10091119

    Article  Google Scholar 

  11. Nepf HM (2012) Flow and transport in regions with aquatic vegetation. Annu Rev Fluid Mech 44:123–142. https://doi.org/10.1146/annurev-fluid-120710-101048

    Article  Google Scholar 

  12. Nepf HM (2012) Hydrodynamics of vegetated channels. J Hydraul Res 50:262–279. https://doi.org/10.1080/00221686.2012.696559

    Article  Google Scholar 

  13. Kitsikoudis V, Kibler KM, Walters LJ (2020) In-situ measurements of turbulent flow over intertidal natural and degraded oyster reefs in an estuarine lagoon. Ecol Eng 143:105688. https://doi.org/10.1016/j.ecoleng.2019.105688

    Article  Google Scholar 

  14. Champion PD, Tanner CC (2000) Seasonality of macrophytes and interaction with flow in a New Zealand lowland stream. Hydrobiologia 441:1–12. https://doi.org/10.1023/a:1017517303221

    Article  Google Scholar 

  15. Palmer MA, Bernhardt ES, Allan JD, Lake PS, Alexander G, Brooks S, Carr J, Clayton S, Dahm CN, Shah JF, Galat DL, Loss SG, Goodwin P, Hart DD, Hassett B, Jenkinson R, Kondolf GM, Lave R, Meyer JL, O’Donnell TK, Pagano L, Sudduth E (2005) Standards for ecologically successful river restoration. J Appl Ecol 42:208–217. https://doi.org/10.1111/j.1365-2664.2005.01004.x

    Article  Google Scholar 

  16. Beechie TJ, Sear DA, Olden JD, Pess GR, Buffington JM, Moir H, Roni P, Pollock MM (2010) Process-based principles for restoring river ecosystems. Bioscience 60:209–222. https://doi.org/10.1525/bio.2010.60.3.7

    Article  Google Scholar 

  17. Vargas-Luna A, Crosato A, Anders N, Hoitink AJ, Keesstra SD, Uijttewaal WS (2018) Morphodynamic effects of riparian vegetation growth after stream restoration. Earth Surf Process Landf 43:1591–1607. https://doi.org/10.1002/esp.4338

    Article  Google Scholar 

  18. Kibler KM, Kitsikoudis V, Donnelly M, Spiering DW, Walters L (2019) Flow–vegetation interaction in a living shoreline restoration and potential effect to mangrove recruitment. Sustainability 11:3215. https://doi.org/10.3390/su11113215

    Article  Google Scholar 

  19. Takemura T, Tanaka N (2007) Flow structures and drag characteristics of a colony-type emergent roughness model mounted on a flat plate in uniform flow. Fluid Dyn Res 39:694–710. https://doi.org/10.1016/j.fluiddyn.2007.06.001

    Article  Google Scholar 

  20. Chen Z, Ortiz A, Zong L, Nepf H (2012) The wake structure behind a porous obstruction and its implications for deposition near a finite patch of emergent vegetation. Water Resour Res 48:W09517. https://doi.org/10.1029/2012wr012224

    Article  Google Scholar 

  21. Zong L, Nepf H (2012) Vortex development behind a finite porous obstruction in a channel. J Fluid Mech 691:368–391. https://doi.org/10.1017/jfm.2011.479

    Article  Google Scholar 

  22. Yagci O, Tschiesche U, Kabdasli MS (2010) The role of different forms of natural riparian vegetation on turbulence and kinetic energy characteristics. Adv Water Resour 33:601–614. https://doi.org/10.1016/j.advwatres.2010.03.008

    Article  Google Scholar 

  23. Yagci O, Celik MF, Kitsikoudis V, Kirca VSO, Hodoglu C, Valyrakis M, Duran Z, Kaya S (2016) Scour patterns around isolated vegetation elements. Adv Water Resour 97:251–265. https://doi.org/10.1016/j.advwatres.2016.10.002

    Article  Google Scholar 

  24. Schoelynck J, Creëlle S, Buis K, De Mulder T, Emsens WJ, Hein T, Meire D, Meire P, Okruszko T, Preiner S, Gonzalez RR, Silinski A, Temmerman S, Troch P, Oyen TV, Verschoren V, Visser F, Wang C, Wolters JW, Folkard A (2018) What is a macrophyte patch? Patch identification in aquatic ecosystems and guidelines for consistent delineation. Ecohydrol Hydrobiol 18:1–9. https://doi.org/10.1016/j.ecohyd.2017.10.005

    Article  Google Scholar 

  25. Sukhodolov AN, Sukhodolova TA (2010) Case study: effect of submerged aquatic plants on turbulence structure in a lowland river. J Hydraul Eng 136:434–446. https://doi.org/10.1061/(asce)hy.1943-7900.0000195

    Article  Google Scholar 

  26. Kitsikoudis V, Yagci O, Kirca VSO, Kellecioglu D (2016) Experimental investigation of channel flow through idealized isolated tree-like vegetation. Environ Fluid Mech 16:1283–1308. https://doi.org/10.1007/s10652-016-9487-7

    Article  Google Scholar 

  27. Nicolle A, Eames I (2011) Numerical study of flow through and around a circular array of cylinders. J Fluid Mech 679:1–31. https://doi.org/10.1017/jfm.2011.77

    Article  Google Scholar 

  28. Chang K, Constantinescu G (2015) Numerical investigation of flow and turbulence structure through and around a circular array of rigid cylinders. J Fluid Mech 776:161–199. https://doi.org/10.1017/jfm.2015.321

    Article  Google Scholar 

  29. Follett EM, Nepf HM (2012) Sediment patterns near a model patch of reedy emergent vegetation. Geomorphology 179:141–151. https://doi.org/10.1016/j.geomorph.2012.08.006

    Article  Google Scholar 

  30. Ortiz AC, Ashton A, Nepf H (2013) Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition. J Geophys Res Earth Surf 118:2585–2599. https://doi.org/10.1002/2013jf002858

    Article  Google Scholar 

  31. Yagci O, Yildirim I, Celik MF, Kitsikoudis V, Duran Z, Kirca VSO (2017) Clear water scour around a finite array of cylinders. Appl Ocean Res 68:114–129. https://doi.org/10.1016/j.apor.2017.08.014

    Article  Google Scholar 

  32. Green JC (2005) Comparison of blockage factors in modelling the resistance of channels containing submerged macrophytes. River Res Appl 21:671–686. https://doi.org/10.1002/rra.854

    Article  Google Scholar 

  33. Nikora V, Larned S, Nikora N, Debnath K, Cooper G, Reid M (2008) Hydraulic resistance due to aquatic vegetation in small streams: field study. J Hydraul Eng 134:1326–1332. https://doi.org/10.1061/(asce)0733-9429(2008)134:9(1326)

    Article  Google Scholar 

  34. Bal K, Struyf E, Vereecken H, Viaene P, De Doncker L, de Deckere E, Mostaert F, Meire P (2011) How do macrophyte distribution patterns affect hydraulic resistances? Ecol Eng 37:529–533. https://doi.org/10.1016/j.ecoleng.2010.12.018

    Article  Google Scholar 

  35. Luhar M, Nepf HM (2013) From the blade scale to the reach scale: a characterization of aquatic vegetative drag. Adv Water Resour 51:305–316. https://doi.org/10.1016/j.advwatres.2012.02.002

    Article  Google Scholar 

  36. Cornacchia L, Folkard A, Davies G, Grabowski RC, Koppel J, Wal D, Wharton G, Puijalon S, Bouma TJ (2019) Plants face the flow in V formation: a study of plant patch alignment in streams. Limnol Oceanogr 64:1087–1102. https://doi.org/10.1002/lno.11099

    Article  Google Scholar 

  37. Gurnell A (2014) Plants as river system engineers. Earth Surf Process Landf 39:4–25. https://doi.org/10.1002/esp.3397

    Article  Google Scholar 

  38. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. https://doi.org/10.2307/3545850

    Article  Google Scholar 

  39. Bouma TJ, van Duren LA, Temmerman S, Claverie T, Blanco-Garcia A, Ysebaert T, Herman PMJ (2007) Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume and modelling experiments. Cont Shelf Res 27:1020–1045. https://doi.org/10.1016/j.csr.2005.12.019

    Article  Google Scholar 

  40. Schoelynck J, de Groote T, Bal K, Vandenbruwaene W, Meire P, Temmerman S (2012) Self-organised patchiness and scale-dependent bio-geomorphic feedbacks in aquatic river vegetation. Ecography 35:760–768. https://doi.org/10.1111/j.1600-0587.2011.07177.x

    Article  Google Scholar 

  41. Sumner D (2010) Two circular cylinders in cross-flow: a review. J Fluids Struct 26:849–899. https://doi.org/10.1016/j.jfluidstructs.2010.07.001

    Article  Google Scholar 

  42. Zhou Y, Alam MM (2016) Wake of two interacting circular cylinders: a review. Int J Heat Fluid Flow 62:510–537. https://doi.org/10.1016/j.ijheatfluidflow.2016.08.008

    Article  Google Scholar 

  43. Vandenbruwaene W, Temmerman S, Bouma TJ, Klaassen PC, de Vries MB, Callaghan DP, van Steeg P, Dekker F, van Duren LA, Martini E, Balke T, Biermans G, Schoelynck J, Meire P (2011) Flow interaction with dynamic vegetation patches: implications for biogeomorphic evolution of a tidal landscape. J Geophys Res 116:F01008. https://doi.org/10.1029/2010jf001788

    Article  Google Scholar 

  44. Meire DWSA, Kondziolka JM, Nepf HM (2014) Interaction between neighboring vegetation patches: impact on flow and deposition. Water Resour Res 50:3809–3825. https://doi.org/10.1002/2013wr015070

    Article  Google Scholar 

  45. Kondziolka JM, Nepf HM (2014) Vegetation wakes and wake interaction shaping aquatic landscape evolution. Limnol Oceanogr Fluids Environ 4:106–119. https://doi.org/10.1215/21573689-2846314

    Article  Google Scholar 

  46. de Lima PHS, Janzen JG, Nepf HM (2015) Flow patterns around two neighboring patches of emergent vegetation and possible implications for deposition and vegetation growth. Environ Fluid Mech 15:881–898. https://doi.org/10.1007/s10652-015-9395-2

    Article  Google Scholar 

  47. Yamasaki TN, de Lima PH, Silva DF, Preza CGA, Janzen JG, Nepf HM (2019) From patch to channel scale: the evolution of emergent vegetation in a channel. Adv Water Resour 129:131–145. https://doi.org/10.1016/j.advwatres.2019.05.009

    Article  Google Scholar 

  48. van Wesenbeeck BK, van de Koppel J, Herman PMJ, Bouma TJ (2008) Does scale-dependent feedback explain spatial complexity in salt-marsh ecosystems? Oikos 117:152–159. https://doi.org/10.1111/j.2007.0030-1299.16245.x

    Article  Google Scholar 

  49. Cornacchia L, Licci S, Nepf H, Folkard A, Wal D, Koppel J, Puijalon S, Bouma TJ (2019) Turbulence-mediated facilitation of resource uptake in patchy stream macrophytes. Limnol Oceanogr 64:714–727. https://doi.org/10.1002/lno.11070

    Article  Google Scholar 

  50. Thomas RE, Schindfessel L, McLelland SJ, Creëlle S, Mulder TD (2017) Bias in mean velocities and noise in variances and covariances measured using a multistatic acoustic profiler: the Nortek Vectrino Profiler. Meas Sci Technol 28:075302. https://doi.org/10.1088/1361-6501/aa7273

    Article  Google Scholar 

  51. Mori N, Suzuki T, Kakuno S (2007) Noise of acoustic Doppler velocimeter data in bubbly flows. J Eng Mech 133:122–125. https://doi.org/10.1061/(asce)0733-9399(2007)133:1(122)

    Article  Google Scholar 

  52. Goring DG, Nikora VI (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128:117–126. https://doi.org/10.1061/(asce)0733-9429(2002)128:1(117)

    Article  Google Scholar 

  53. Wahl TL (2003) Discussion of “Despiking acoustic Doppler velocimeter data” by D.G. Goring and V.I. Nikora. J Hydraul Eng 129:484–487. https://doi.org/10.1061/(asce)0733-9429(2003)129:6(484)

    Article  Google Scholar 

  54. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  55. Sumer BM, Fredsoe J (1997) Hydrodynamics around cylindrical structures, advanced series on ocean engineering, vol 12. World Scientific, Singapore

    Book  Google Scholar 

  56. Kitsikoudis V, Kirca VSO, Yagci O, Celik MF (2017) Clear-water scour and flow field alteration around an inclined pile. Coast Eng 129:59–73. https://doi.org/10.1016/j.coastaleng.2017.09.001

    Article  Google Scholar 

  57. Lee JHW, Chu VH (2003) Turbulent jets and plumes: a Lagrangian approach. Springer US, New York. https://doi.org/10.1007/978-1-4615-0407-8

    Book  Google Scholar 

  58. Wong CW, Zhou Y, Alam MM, Zhou TM (2014) Dependence of flow classification on the Reynolds number for a two-cylinder wake. J Fluids Struct 49:485–497. https://doi.org/10.1016/j.jfluidstructs.2014.05.008

    Article  Google Scholar 

Download references

Acknowledgements

Vasileios Kitsikoudis acknowledges financial support for postdoctoral research from The Scientific and Technological Research Council of Turkey—TUBITAK 2216 (Ref. No. 21514107-115.02-45898) and from Istanbul Technical University Scientific Research Projects Units (ITU-BAP)—Postdoctoral Research Support. The authors are grateful to Isilsu Yildirim and to ITU Hydraulics Laboratory technicians Mevlut Ulucinar, Hasan Yalcin, and Yasar Aktas for their assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Kitsikoudis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitsikoudis, V., Yagci, O. & Kirca, V.S.O. Experimental analysis of flow and turbulence in the wake of neighboring emergent vegetation patches with different densities. Environ Fluid Mech 20, 1417–1439 (2020). https://doi.org/10.1007/s10652-020-09746-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-020-09746-6

Keywords

Navigation