Skip to main content
Log in

Preserving the Female Genome in Trehalose Glass at Supra-Zero Temperatures: The Relationship Between Moisture Content and DNA Damage in Feline Germinal Vesicles

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Maintaining a stable dry state is critical for long-term preservation of live biomaterials at suprazero temperatures. The objective of the study was to characterize the effect of moisture content on DNA integrity within the germinal vesicle (GV) of feline oocytes following dehydration and storage at 22–24 °C.

Methods

Using microwave-assisted drying, conditions that led to a predictable and stable moisture content in trehalose solutions were determined. To explore moisture content stability during storage, trehalose samples were dried for 15 min and stored in glass vials at 11 or 43% RH for 8 weeks. To examine whether this condition allowed proper storage of GVs, permeabilized cat oocytes were incubated in trehalose for 10 min and dried for 15 or 30 min. Oocytes then were rehydrated to assess DNA integrity either directly after drying or after 8 weeks of storage in an 11% RH environment. Raman spectroscopy was used to identify the states of dried samples during storage.

Results

Moisture content was stable during the storage period. There was no significant difference in DNA integrity between fresh and dried samples without storage. After 8 weeks of storage, DNA integrity was maintained in GVs dried for 30 min. Samples dried for 15 min and stored were compromised, suggesting crystallization of the preservation matrix during storage. Biostabilization was optimal when samples were directly processed to moisture contents consistent with storage in the glassy state.

Conclusion

Microwave-assisted drying processing and storage conditions were optimized to ensure stable long-term storage of structural and functional properties of genetic resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Acker, J. P., X. M. Lu, V. Young, S. Cheley, H. Bayley, A. Fowler, and M. Toner. Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore. Biotechnol. Bioeng. 82:525–532, 2003.

    Article  Google Scholar 

  2. Aktas, T., P. Ulger, F. Daglioglu, and F. H. Sahin. Sorption isotherms and net isosteric heat of sorption for plum osmotically pre-treated with trehalose and sucrose solutions. Bulg. J. Agric. Sci. 20:8, 2014.

    Google Scholar 

  3. Al Hodali, R. Numerical simulation of an agricultural foodstuffs drying unit using solar energy and adsorption process. PhD Thesis, Universite Libre de Bruxelles, Belgium 1997.

  4. Al-Muhtaseb, A. H., W. A. M. McMinn, and T. R. A. Magee. Water sorption isotherms of starch powders—Part 1: mathematical description of experimental data. J. Food Eng. 61:297–307, 2004.

    Article  Google Scholar 

  5. Andrade, R. D., R. Lemus, and C. E. Perez. Models of sorption isotherms for food: uses and limitations. Vitae-Rev. Fac. Quimica Farm. 18:324–333, 2011.

    Google Scholar 

  6. Basu, S., U. S. Shivhare, and A. S. Mujumdar. Models for sorption isotherms for foods: a review. Dry. Technol. 24:917–930, 2006.

    Article  Google Scholar 

  7. Cellemme, S. L., M. Van Vorst, E. Paramore, and G. D. Elliott. Advancing microwave technology for dehydration processing of biologics. Biopreserv. Biobank. 11:278–284, 2013.

    Article  Google Scholar 

  8. Chakraborty, N., D. Biswas, W. Parker, P. Moyer, and G. D. Elliott. A role for microwave processing in the dry preservation of mammalian cells. Biotechnol. Bioeng. 100:782–796, 2008.

    Article  Google Scholar 

  9. Chakraborty, N., M. A. Menze, J. Malsam, A. Aksan, S. C. Hand, and M. Toner. Cryopreservation of spin-dried mammalian cells. PLoS ONE 6:e24916–e24916, 2011.

    Article  Google Scholar 

  10. Chakravarty, P., S. P. Bhardwaj, L. King, and R. Suryanarayanan. Monitoring phase transformations in intact tablets of trehalose by FT-Raman spectroscopy. AAPS PharmSciTech 10:1420–1426, 2009.

    Article  Google Scholar 

  11. Chen, C. Pregnancy after human oocyte cryopreservation. Lancet 1:884–886, 1986.

    Article  Google Scholar 

  12. Chen, T., A. Fowler, and M. Toner. Literature review: supplemented phase diagram of the trehalose–water binary mixture. Cryobiology 40:277–282, 2000.

    Article  Google Scholar 

  13. Comizzoli, P., B. S. Pukazhenthi, and D. E. Wildt. The competence of germinal vesicle oocytes is unrelated to nuclear chromatin configuration and strictly depends on cytoplasmic quantity and quality in the cat model. Hum. Reprod. 26:2165–2177, 2011.

    Article  Google Scholar 

  14. Comizzoli, P., D. E. Wildt, and B. S. Pukazhenthi. Impact of anisosmotic conditions on structural and functional integrity of cumulus–oocyte complexes at the germinal vesicle stage in the domestic cat. Mol. Reprod. Dev. 75:345–354, 2008.

    Article  Google Scholar 

  15. Crowe, J. H., J. F. Carpenter, and L. M. Crowe. The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60:73–103, 1998.

    Article  Google Scholar 

  16. Dang-Nguyen, T. Q., H. T. Nguyen, M. T. Nguyen, T. Somfai, J. Noguchi, H. Kaneko, and K. Kikuchi. Maturation ability after transfer of freeze-dried germinal vesicles from porcine oocytes. Anim. Sci. J. 89:1253–1260, 2018.

    Article  Google Scholar 

  17. De Gelder, J., K. De Gussem, P. Vandenabeele, and L. Moens. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38:1133–1147, 2007.

    Article  Google Scholar 

  18. Deegan, R. D., O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829, 1997.

    Article  Google Scholar 

  19. Deegan, R. D., O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten. Contact line deposits in an evaporating drop. Phys. Rev. E 62:756–765, 2000.

    Article  Google Scholar 

  20. Elliott, G. D., P.-C. Lee, E. Paramore, M. Van Vorst, and P. Comizzoli. Resilience of oocyte germinal vesicles to microwave-assisted drying in the domestic cat model. Biopreserv. Biobank. 13:164–171, 2015.

    Article  Google Scholar 

  21. Elliott, G. D., S. Wang, and B. J. Fuller. Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76:74–91, 2017.

    Article  Google Scholar 

  22. Feng, H. Y., L. J. Wu, A. Xu, B. R. Hu, T. K. Hei, and Z. L. Yu. Survival of mammalian cells under high vacuum condition for ion bombardment. Cryobiology 49:241–249, 2004.

    Article  Google Scholar 

  23. Graves-Herring, J. E., D. E. Wildt, and P. Comizzoli. Retention of structure and function of the cat germinal vesicle after air-drying and storage at suprazero temperature1. Biol. Reprod. 88:139, 131–137–139, 131–137, 2013.

  24. Greenspan, L. Humidity fixed-points of binary saturated aqueous-solutions. J. Res. Natl Bur. Stand. A 81:89–96, 1977.

    Article  Google Scholar 

  25. Iglesias, H. A., J. Chirife, and M. P. Buera. Adsorption isotherm of amorphous trehalose. J. Sci. Food Agric. 75:183–186, 1997.

    Article  Google Scholar 

  26. Kaymak-Ertekin, F., and A. Gedik. Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. Lebensm.-Wiss. Technol. Food Sci. Technol. 37:429–438, 2004.

    Article  Google Scholar 

  27. Kotula, A. P., C. R. Snyder, and K. B. Migler. Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer 117:1–10, 2017.

    Article  Google Scholar 

  28. Lomauro, C. J., A. S. Bakshi, and T. P. Labuza. Evaluation of food moisture sorption isotherm equations. 1. Fruit, vegetable and meat-products. Lebensm.-Wiss. Technol. 18:111–117, 1985.

    Google Scholar 

  29. Mazzobre, M. F., M. P. Longinotti, H. R. Corti, and M. P. Buera. Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting. Cryobiology 43:199–210, 2001.

    Article  Google Scholar 

  30. Millqvist-Fureby, A., M. Malmsten, and B. Bergenstahl. Spray-drying of trypsin—surface characterisation and activity preservation. Int. J. Pharm. 188:243–253, 1999.

    Article  Google Scholar 

  31. Patrick, J. L., G. D. Elliott, and P. Comizzoli. Structural integrity and developmental potential of spermatozoa following microwave-assisted drying in the domestic cat model. Theriogenology 103:36–43, 2017.

    Article  Google Scholar 

  32. Reis, J., R. Sitaula, and S. Bhowmick. Water activity and glass transition temperatures of disaccharide based buffers for desiccation preservation of biologics. J. Biomed. Sci. Eng. 02:594–605, 2009.

    Article  Google Scholar 

  33. Saad, A., B. Touati, B. Draoui, B. Tabti, A. Abdenebi, and S. Benaceur. Mathematical modeling of moisture sorption isotherms and determination of isosteric heats of sorption of Ziziphus leaves. Model. Simul. Eng. 2014:8, 2014.

    Google Scholar 

  34. Sitaula, R., and S. Bhowmick. Moisture sorption characteristics and thermophysical properties of trehalose–PBS mixtures. Cryobiology 52:369–385, 2006.

    Article  Google Scholar 

  35. Takeuchi, T., Q. V. Neri, and G. D. Palermo. Construction and fertilization of reconstituted human oocytes. Reprod. Biomed. Online 11:309–318, 2005.

    Article  Google Scholar 

  36. Tuschel, D. Molecular spectroscopy workbench why are the Raman spectra of crystalline and amorphous solids different? Spectroscopy 32:26–33, 2017.

    Google Scholar 

  37. Weng, L., W. Song, D. J. Jacobs, and G. D. Elliott. Molecular insights into water vapor absorption by aqueous lithium bromide and lithium bromide/sodium formate solutions. Appl. Therm. Eng. 102:125–133, 2016.

    Article  Google Scholar 

  38. Wood, T. C., and D. E. Wildt. Effect of the quality of the cumulus–oocyte complex in the domestic cat on the ability of oocytes to mature, fertilize and develop into blastocysts in vitro. J. Reprod. Fertil. 110:355–360, 1997.

    Article  Google Scholar 

  39. Yazdani, M., P. Sazandehchi, M. Azizi, and P. Ghobadi. Moisture sorption isotherms and isosteric heat for pistachio. Eur. Food Res. Technol. 223:577–584, 2006.

    Article  Google Scholar 

  40. Yu, G., Y. R. Yap, K. Pollock, and A. Hubel. Characterizing intracellular ice formation of lymphoblasts using low-temperature Raman spectroscopy. Biophys. J. 112:2653–2663, 2017.

    Article  Google Scholar 

  41. Zhang, J., and G. Zografi. The relationship between “BET”- and “Free volume”-derived parameters for water vapor absorption into amorphous solids. J. Pharm. Sci. 89:1063–1072, 2000.

    Article  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the Office of the Director, National Institutes Of Health under Award Number R01OD023139. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors are indebted to Dr. Alida Kinney and staff at the Cabarrus Spay and Neuter Clinic for generously facilitating the transfer of resources from consenting pet-owners to UNC Charlotte. We also thank Sidney Richards for technical assistance.

Conflict of interest

Shangping Wang, Pei-Chih Lee, Amanda Elsayed, Fan Zhang, Yong Zhang, Pierre Comizzoli, and Gloria D. Elliott declare that they have no conflicts of interest.

Ethical Approval

The study did not require the approval of an Animal Care and Use Committee because cat ovaries were collected at local veterinary clinics as byproducts from owner-requested routine ovario-hysterectomies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria D. Elliott.

Additional information

Associate Editor Kris Noel Dahl oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Lee, PC., Elsayed, A. et al. Preserving the Female Genome in Trehalose Glass at Supra-Zero Temperatures: The Relationship Between Moisture Content and DNA Damage in Feline Germinal Vesicles. Cel. Mol. Bioeng. 14, 101–112 (2021). https://doi.org/10.1007/s12195-020-00635-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-020-00635-y

Keywords

Navigation