Skip to main content
Log in

Towards an Insulin Resistant Adipose Model on a Chip

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Adipose tissue and adipocytes are primary regulators of insulin sensitivity and energy homeostasis. Defects in insulin sensitivity of the adipocytes predispose the body to insulin resistance (IR) that could lead to diabetes. However, the mechanisms mediating adipocyte IR remain elusive, which emphasizes the need to develop experimental models that can validate the insulin signaling pathways and discover new mechanisms in the search for novel therapeutics. Currently in vitro adipose organ-chip devices show superior cell function over conventional cell culture. However, none of these models represent disease states. Only when these in vitro models can represent both healthy and disease states, they can be useful for developing therapeutics. Here, we establish an organ-on-chip model of insulin-resistant adipocytes, as well as characterization in terms of insulin signaling pathway and lipid metabolism.

Methods

We differentiated, maintained, and induced insulin resistance into primary adipocytes in a microfluidic organ-on-chip. We then characterized IR by looking at the insulin signaling pathway and lipid metabolism, and validated by studying a diabetic drug, rosiglitazone.

Results

We confirmed the presence of insulin resistance through reduction of Akt phosphorylation, Glut4 expression, Glut4 translocation and glucose uptake. We also confirmed defects of disrupted insulin signaling through reduction of lipid accumulation from fatty acid uptake and elevation of glycerol secretion. Testing with rosiglitazone showed a significant improvement in insulin sensitivity and fatty acid metabolism as suggested by previous reports.

Conclusions

The adipose-chip exhibited key characteristics of IR and can serve as model to study diabetes and facilitate discovery of novel therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abbott, R. D., W. K. Raja, R. Y. Wang, J. A. Stinson, D. L. Glettig, K. A. Burke, and D. L. Kaplan. Long term perfusion system supporting adipogenesis. Methods 84:84–89, 2015.

    Google Scholar 

  2. Adebonojo, F. O. Studies on human adipose cells in culture: relation of cell size and multiplication to donor age. Yale J. Biol. Med. 48(1):9–16, 1975.

    Google Scholar 

  3. Al-Awar, A., K. Kupai, M. Veszelka, G. Szucs, Z. Attieh, Z. Murlasits, S. Torok, A. Posa, and C. Varga. Experimental diabetes mellitus in different animal models. J. Diabetes Res. 2016:9051426, 2016.

    Google Scholar 

  4. Asada, S., M. Kuroda, Y. Aoyagi, Y. Fukaya, S. Tanaka, S. Konno, M. Tanio, M. Aso, K. Satoh, Y. Okamoto, T. Nakayama, Y. Saito, and H. Bujo. Ceiling culture-derived proliferative adipocytes retain high adipogenic potential suitable for use as a vehicle for gene transduction therapy. Am. J. Physiol. 301(1):C181–C185, 2011.

    Google Scholar 

  5. Aune, U. L., L. Ruiz, and S. Kajimura. Isolation and differentiation of stromal vascular cells to beige/brite cells. J. Visual. Exp. 73:e50191, 2013.

    Google Scholar 

  6. Bjorndal, B., L. Burri, V. Staalesen, J. Skorve, and R. K. Berge. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J. Obes. 2011:490650, 2011.

    Google Scholar 

  7. Boutens, L., and R. Stienstra. Adipose tissue macrophages: going off track during obesity. Diabetologia 59(5):879–894, 2016.

    Google Scholar 

  8. Boyle, J. P., T. J. Thompson, E. W. Gregg, L. E. Barker, and D. F. Williamson. Projection of the year 2050 burden of diabetes in the us adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul. Health Metr. 8(1):29, 2010.

    Google Scholar 

  9. Cawthorn, W. P., and J. K. Sethi. Tnf-alpha and adipocyte biology. FEBS Lett. 582(1):117–131, 2008.

    Google Scholar 

  10. Chen, F. C., K. P. Shen, J. B. Chen, H. L. Lin, C. L. Hao, H. W. Yen, and S. Y. Shaw. Pgbr extract ameliorates tnf-alpha induced insulin resistance in hepatocytes. Kaohsiung J. Med. Sci. 34(1):14–21, 2018.

    Google Scholar 

  11. Choi, S. M., D. F. Tucker, D. N. Gross, R. M. Easton, L. M. DiPilato, A. S. Dean, B. R. Monks, and M. J. Birnbaum. Insulin regulates adipocyte lipolysis via an akt-independent signaling pathway. Mol. Cell. Biol. 30(21):5009–5020, 2010.

    Google Scholar 

  12. Cong, L. N., H. Chen, Y. Li, L. Zhou, M. A. McGibbon, S. I. Taylor, and M. J. Quon. Physiological role of akt in insulin-stimulated translocation of glut4 in transfected rat adipose cells. Mol. Endocrinol. 11(13):1881–1890, 1997.

    Google Scholar 

  13. Cusi, K., K. Maezono, A. Osman, M. Pendergrass, M. E. Patti, T. Pratipanawatr, R. A. DeFronzo, C. R. Kahn, and L. J. Mandarino. Insulin resistance differentially affects the pi 3-kinase- and map kinase-mediated signaling in human muscle. J. Clin. Invest. 105(3):311–320, 2000.

    Google Scholar 

  14. Edington, C. D., W. L. K. Chen, E. Geishecker, T. Kassis, L. R. Soenksen, B. M. Bhushan, D. Freake, J. Kirschner, C. Maass, N. Tsamandouras, J. Valdez, C. D. Cook, T. Parent, S. Snyder, J. Yu, E. Suter, M. Shockley, J. Velazquez, J. J. Velazquez, L. Stockdale, J. P. Papps, I. Lee, N. Vann, M. Gamboa, M. E. LaBarge, Z. Zhong, X. Wang, L. A. Boyer, D. A. Lauffenburger, R. L. Carrier, C. Communal, S. R. Tannenbaum, C. L. Stokes, D. J. Hughes, G. Rohatgi, D. L. Trumper, M. Cirit, and L. G. Griffith. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 8(1):4530, 2018.

    Google Scholar 

  15. Engin, A. B. Adipocyte-macrophage cross-talk in obesity. Adv. Exp. Med. Biol. 960:327–343, 2017.

    Google Scholar 

  16. Fain, J. N., V. P. Kovacev, and R. O. Scow. Antilipolytic effect of insulin in isolated fat cells of the rat. Endocrinology 78(4):773–778, 1966.

    Google Scholar 

  17. Finkelstein, E. A., O. A. Khavjou, H. Thompson, J. G. Trogdon, L. Pan, B. Sherry, and W. Dietz. Obesity and severe obesity forecasts through 2030. Am. J. Prev. Med. 42(6):563–570, 2012.

    Google Scholar 

  18. Godwin, L. A., J. C. Brooks, L. D. Hoepfner, D. Wanders, R. L. Judd, and C. J. Easley. A microfluidic interface for the culture and sampling of adiponectin from primary adipocytes. Analyst 140(4):1019–1025, 2015.

    Google Scholar 

  19. Gonzalez, E., E. Flier, D. Molle, D. Accili, and T. E. McGraw. Hyperinsulinemia leads to uncoupled insulin regulation of the glut4 glucose transporter and the foxo1 transcription factor. Proc. Natl. Acad. Sci. USA 108(25):10162–10167, 2011.

    Google Scholar 

  20. Green, A., J. M. Rumberger, C. A. Stuart, and M. S. Ruhoff. Stimulation of lipolysis by tumor necrosis factor-alpha in 3t3-l1 adipocytes is glucose dependent: implications for long-term regulation of lipolysis. Diabetes 53(1):74–81, 2004.

    Google Scholar 

  21. Guedes, J. A. C., J. V. Esteves, M. R. Morais, T. M. Zorn, and D. T. Furuya. Osteocalcin improves insulin resistance and inflammation in obese mice: participation of white adipose tissue and bone. Bone 115:68–82, 2018.

    Google Scholar 

  22. Guilherme, A., J. V. Virbasius, V. Puri, and M. P. Czech. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9(5):367–377, 2008.

    Google Scholar 

  23. Hernandez, R., T. Teruel, C. de Alvaro, and M. Lorenzo. Rosiglitazone ameliorates insulin resistance in brown adipocytes of wistar rats by impairing tnf-alpha induction of p38 and p42/p44 mitogen-activated protein kinases. Diabetologia 47(9):1615–1624, 2004.

    Google Scholar 

  24. Hoehn, K. L., C. Hohnen-Behrens, A. Cederberg, L. E. Wu, N. Turner, T. Yuasa, Y. Ebina, and D. E. James. Irs1-independent defects define major nodes of insulin resistance. Cell. Metab. 7(5):421–433, 2008.

    Google Scholar 

  25. Hotamisligil, G. S., D. L. Murray, L. N. Choy, and B. M. Spiegelman. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc. Natl. Acad. Sci. USA 91(11):4854–4858, 1994.

    Google Scholar 

  26. Hotamisligil, G. S., P. Peraldi, A. Budavari, R. Ellis, M. F. White, and B. M. Spiegelman. Irs-1-mediated inhibition of insulin receptor tyrosine kinase activity in tnf-alpha- and obesity-induced insulin resistance. Science 271(5249):665–668, 1996.

    Google Scholar 

  27. Hube, F., and H. Hauner. The role of tnf-alpha in human adipose tissue: prevention of weight gain at the expense of insulin resistance? Horm. Metab. Res. 31(12):626–631, 1999.

    Google Scholar 

  28. Huh, D., G. A. Hamilton, and D. E. Ingber. From 3d cell culture to organs-on-chips. Trends Cell Biol. 21(12):745–754, 2011.

    Google Scholar 

  29. Hupfeld, C. J., C. H. Courtney, and J. M. Olefsky. Type 2 diabetes mellitus: etiology, pathogenesis, and natural history. In: Endocrinology, edited by L.J. DeGroot. 2010, pp. 765–787

  30. Jager, J., T. Gremeaux, M. Cormont, Y. Le Marchand-Brustel, and J. F. Tanti. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148(1):241–251, 2007.

    Google Scholar 

  31. Jang, M., P. Neuzil, T. Volk, A. Manz, and A. Kleber. On-chip three-dimensional cell culture in phaseguides improves hepatocyte functions in vitro. Biomicrofluidics 9(3):034113, 2015.

    Google Scholar 

  32. Jiang, G., Q. Dallas-Yang, S. Biswas, Z. Li, and B. B. Zhang. Rosiglitazone, an agonist of peroxisome-proliferator-activated receptor gamma (ppargamma), decreases inhibitory serine phosphorylation of irs1 in vitro and in vivo. Biochem. J. 377(Pt 2):339–346, 2004.

    Google Scholar 

  33. Jiang, Z. Y., Q. L. Zhou, K. A. Coleman, M. Chouinard, Q. Boese, and M. P. Czech. Insulin signaling through akt/protein kinase b analyzed by small interfering rna-mediated gene silencing. Proc. Natl. Acad. Sci. USA 100(13):7569–7574, 2003.

    Google Scholar 

  34. Kahn, B. B., E. S. Horton, and S. W. Cushman. Mechanism for enhanced glucose transport response to insulin in adipose cells from chronically hyperinsulinemic rats: increased translocation of glucose transporters from an enlarged intracellular pool. J. Clin. Invest. 79(3):853–858, 1987.

    Google Scholar 

  35. Kahn, S. E., R. L. Hull, and K. M. Utzschneider. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846, 2006.

    Google Scholar 

  36. Karlsson, H. K., K. Hallsten, M. Bjornholm, H. Tsuchida, A. V. Chibalin, K. A. Virtanen, O. J. Heinonen, F. Lonnqvist, P. Nuutila, and J. R. Zierath. Effects of metformin and rosiglitazone treatment on insulin signaling and glucose uptake in patients with newly diagnosed type 2 diabetes: a randomized controlled study. Diabetes 54(5):1459–1467, 2005.

    Google Scholar 

  37. Kimura, H., Y. Sakai, and T. Fujii. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab. Pharmacokinet. 33(1):43–48, 2018.

    Google Scholar 

  38. King, A. J. The use of animal models in diabetes research. Br. J. Pharmacol. 166(3):877–894, 2012.

    Google Scholar 

  39. Kohn, A. D., S. A. Summers, M. J. Birnbaum, and R. A. Roth. Expression of a constitutively active akt ser/thr kinase in 3t3-l1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271(49):31372–31378, 1996.

    Google Scholar 

  40. Lahey, R., and S. S. Khan. Trends in obesity and risk of cardiovascular disease. Curr. Epidemiol. Rep. 5(3):243–251, 2018.

    Google Scholar 

  41. Laviola, L., S. Perrini, A. Cignarelli, A. Natalicchio, A. Leonardini, F. De Stefano, M. Cuscito, M. De Fazio, V. Memeo, V. Neri, M. Cignarelli, R. Giorgino, and F. Giorgino. Insulin signaling in human visceral and subcutaneous adipose tissue in vivo. Diabetes 55(4):952–961, 2006.

    Google Scholar 

  42. Lessard, J., M. Pelletier, L. Biertho, S. Biron, S. Marceau, F. S. Hould, S. Lebel, F. Moustarah, O. Lescelleur, P. Marceau, and A. Tchernof. Characterization of dedifferentiating human mature adipocytes from the visceral and subcutaneous fat compartments: fibroblast-activation protein alpha and dipeptidyl peptidase 4 as major components of matrix remodeling. PLoS ONE 10(3):e0122065, 2015.

    Google Scholar 

  43. Li, S., M. S. Brown, and J. L. Goldstein. Bifurcation of insulin signaling pathway in rat liver: Mtorc1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Natl. Acad. Sci. USA 107(8):3441–3446, 2010.

    Google Scholar 

  44. Li, X., and C. J. Easley. Microfluidic systems for studying dynamic function of adipocytes and adipose tissue. Anal. Bioanal. Chem. 410(3):791–800, 2018.

    Google Scholar 

  45. Liu, Y., P. Kongsuphol, S. B. N. Gourikutty, and Q. Ramadan. Human adipocyte differentiation and characterization in a perfusion-based cell culture device. Biomed. Microdevices 19(3):18, 2017.

    Google Scholar 

  46. Liu, T., B. Yu, M. Kakino, H. Fujimoto, Y. Ando, F. Hakuno, and S.-I. Takahashi. A novel irs-1-associated protein, dgkζ regulates glut4 translocation in 3t3-l1 adipocytes. Sci. Rep. 6(1):35438, 2016.

    Google Scholar 

  47. Loskill, P., T. Sezhian, K. M. Tharp, F. T. Lee-Montiel, S. Jeeawoody, W. M. Reese, P. H. Zushin, A. Stahl, and K. E. Healy. Wat-on-a-chip: a physiologically relevant microfluidic system incorporating white adipose tissue. Lab. Chip 17(9):1645–1654, 2017.

    Google Scholar 

  48. Lu, S., C. E. Dugan, and R. T. Kennedy. Microfluidic chip with integrated electrophoretic immunoassay for investigating cell–cell interactions. Anal. Chem. 90(8):5171–5178, 2018.

    Google Scholar 

  49. Malinowski, J. M., and S. Bolesta. Rosiglitazone in the treatment of type 2 diabetes mellitus: a critical review. Clin Ther 22(10):1151–1168, 2000; (discussion 1149-1150).

    Google Scholar 

  50. Marshall, S. Kinetics of insulin action on protein synthesis in isolated adipocytes. Ability of glucose to selectively desensitize the glucose transport system without altering insulin stimulation of protein synthesis. J. Biol. Chem. 264(4):2029–2036, 1989.

    Google Scholar 

  51. Martinez, L., M. Berenguer, M. C. Bruce, Y. Le Marchand-Brustel, and R. Govers. Rosiglitazone increases cell surface glut4 levels in 3t3-l1 adipocytes through an enhancement of endosomal recycling. Biochem. Pharmacol. 79(9):1300–1309, 2010.

    Google Scholar 

  52. McDonald, J. C., M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, and G. M. Whitesides. Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing. Anal Chem 74(7):1537–1545, 2002.

    Google Scholar 

  53. Minokoshi, Y., C. R. Kahn, and B. B. Kahn. Tissue-specific ablation of the glut4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J. Biol. Chem. 278(36):33609–33612, 2003.

    Google Scholar 

  54. Mishima, Y., A. Kuyama, A. Tada, K. Takahashi, T. Ishioka, and M. Kibata. Relationship between serum tumor necrosis factor-alpha and insulin resistance in obese men with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 52(2):119–123, 2001.

    Google Scholar 

  55. Moraes, C., J. M. Labuz, B. M. Leung, M. Inoue, T. H. Chun, and S. Takayama. On being the right size: scaling effects in designing a human-on-a-chip. Integr. Biol. 5(9):1149–1161, 2013.

    Google Scholar 

  56. Morigny, P., M. Houssier, E. Mouisel, and D. Langin. Adipocyte lipolysis and insulin resistance. Biochimie 125:259–266, 2016.

    Google Scholar 

  57. Ng, Y., G. Ramm, and D. E. James. Dissecting the mechanism of insulin resistance using a novel heterodimerization strategy to activate akt. J. Biol. Chem. 285(8):5232–5239, 2010.

    Google Scholar 

  58. Nguyen, M. T., H. Satoh, S. Favelyukis, J. L. Babendure, T. Imamura, J. I. Sbodio, J. Zalevsky, B. I. Dahiyat, N. W. Chi, and J. M. Olefsky. Jnk and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3t3-l1 adipocytes. J. Biol. Chem. 280(42):35361–35371, 2005.

    Google Scholar 

  59. Park, S. Y., Y. R. Cho, H. J. Kim, T. Higashimori, C. Danton, M. K. Lee, A. Dey, B. Rothermel, Y. B. Kim, A. Kalinowski, K. S. Russell, and J. K. Kim. Unraveling the temporal pattern of diet-induced insulin resistance in individual organs and cardiac dysfunction in c57bl/6 mice. Diabetes 54(12):3530–3540, 2005.

    Google Scholar 

  60. Prodanov, L., R. Jindal, S. S. Bale, M. Hegde, W. J. McCarty, I. Golberg, A. Bhushan, M. L. Yarmush, and O. B. Usta. Long-term maintenance of a microfluidic 3d human liver sinusoid. Biotechnol. Bioeng. 113(1):241–246, 2016.

    Google Scholar 

  61. Qatanani, M., and M. A. Lazar. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 21(12):1443–1455, 2007.

    Google Scholar 

  62. Rothbauer, M., H. Zirath, and P. Ertl. Recent advances in microfluidic technologies for cell-to-cell interaction studies. Lab. Chip 18(2):249–270, 2018.

    Google Scholar 

  63. Rotter, V., I. Nagaev, and U. Smith. Interleukin-6 (il-6) induces insulin resistance in 3t3-l1 adipocytes and is, like il-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J. Biol. Chem. 278(46):45777–45784, 2003.

    Google Scholar 

  64. Ruan, H., N. Hacohen, T. R. Golub, L. Van Parijs, and H. F. Lodish. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3t3-l1 adipocytes: nuclear factor-kappab activation by tnf-alpha is obligatory. Diabetes 51(5):1319–1336, 2002.

    Google Scholar 

  65. Ruban, A., K. Stoenchev, H. Ashrafian, and J. Teare. Current treatments for obesity. Clin. Med. (Lond.) 19(3):205–212, 2019.

    Google Scholar 

  66. Ryden, M., and P. Arner. Tumour necrosis factor-alpha in human adipose tissue – from signalling mechanisms to clinical implications. J. Intern. Med. 262(4):431–438, 2007.

    Google Scholar 

  67. Sabio, G., M. Das, A. Mora, Z. Zhang, J. Y. Jun, H. J. Ko, T. Barrett, J. K. Kim, and R. J. Davis. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322(5907):1539–1543, 2008.

    Google Scholar 

  68. Sakoda, H., T. Ogihara, M. Anai, M. Funaki, K. Inukai, H. Katagiri, Y. Fukushima, Y. Onishi, H. Ono, M. Fujishiro, M. Kikuchi, Y. Oka, and T. Asano. Dexamethasone-induced insulin resistance in 3t3-l1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction. Diabetes 49(10):1700–1708, 2000.

    Google Scholar 

  69. Shen, J. F., A. Sugawara, J. Yamashita, H. Ogura, and S. Sato. Dedifferentiated fat cells: an alternative source of adult multipotent cells from the adipose tissues. Int. J. Oral Sci. 3(3):117–124, 2011.

    Google Scholar 

  70. Shibasaki, M., K. Takahashi, T. Itou, H. Bujo, and Y. Saito. A ppar agonist improves tnf-alpha-induced insulin resistance of adipose tissue in mice. Biochem. Biophys. Res. Commun. 309(2):419–424, 2003.

    Google Scholar 

  71. Shulman, G. I. Cellular mechanisms of insulin resistance. J. Clin. Investig. 106(2):171–176, 2000.

    MathSciNet  Google Scholar 

  72. Sugihara, H., N. Yonemitsu, S. Miyabara, and S. Toda. Proliferation of unilocular fat cells in the primary culture. J. Lipid Res. 28(9):1038–1045, 1987.

    Google Scholar 

  73. Sugihara, H., N. Yonemitsu, S. Miyabara, and K. Yun. Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties. Differentiation 31(1):42–49, 1986.

    Google Scholar 

  74. Tan, S. X., K. H. Fisher-Wellman, D. J. Fazakerley, Y. Ng, H. Pant, J. Li, C. C. Meoli, A. C. Coster, J. Stockli, and D. E. James. Selective insulin resistance in adipocytes. J. Biol. Chem. 290(18):11337–11348, 2015.

    Google Scholar 

  75. Tanataweethum, N., A. Zelaya, F. Yang, R. N. Cohen, E. M. Brey, and A. Bhushan. Establishment and characterization of a primary murine adipose tissue-chip. Biotechnol. Bioeng. 115(8):1979–1987, 2018.

    Google Scholar 

  76. Thomson, M. J., M. G. Williams, and S. C. Frost. Development of insulin resistance in 3t3-l1 adipocytes. J. Biol. Chem. 272(12):7759–7764, 1997.

    Google Scholar 

  77. Tremmel, M., U. G. Gerdtham, P. M. Nilsson, and S. Saha. Economic burden of obesity: a systematic literature review. Int. J. Environ. Res. Public Health 14(4):435, 2017.

    Google Scholar 

  78. Wei, S., W. G. Bergen, G. J. Hausman, L. Zan, and M. V. Dodson. Cell culture purity issues and dfat cells. Biochem. Biophys. Res. Commun. 433(3):273–275, 2013.

    Google Scholar 

  79. Wellen, K. E., and G. S. Hotamisligil. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Investig. 112(12):1785–1788, 2003.

    Google Scholar 

  80. Whiteman, E. L., H. Cho, and M. J. Birnbaum. Role of akt/protein kinase b in metabolism. Trends Endocrinol. Metab. 13(10):444–451, 2002.

    Google Scholar 

  81. Zambon, A., A. Zoso, O. Gagliano, E. Magrofuoco, G. P. Fadini, A. Avogaro, M. Foletto, S. Quake, and N. Elvassore. High temporal resolution detection of patient-specific glucose uptake from human ex vivo adipose tissue on-chip. Anal. Chem. 87(13):6535–6543, 2015.

    Google Scholar 

  82. Zhao, Y., R. K. Kankala, S. B. Wang, and A. Z. Chen. Multi-organs-on-chips: towards long-term biomedical investigations. Molecules 24(4):675, 2019.

    Google Scholar 

Download references

Acknowledgments

We acknowledge support from the Diabetes Research and Training Center (DRTC) at the University of Chicago. We gratefully acknowledge Dr. Nick Menhart and the Idea shop at Illinois Institute of Technology for technical assistance. We thank Dr. Gokhan Dalgin at University of Chicago for assistance with qPCR.

Funding

This work was supported by DRTC Grant P30 DK020595 and student scholarships from the Armor College of Engineering.

Conflict of interest

Authors Nida Tanataweethum, Franklin Zhong, Allyson Trang, Chaeeun Lee, Ronald N. Cohen, Abhinav Bhushan declare that they have no conflict of interest.

Ethical Approval

The studies were conducted with the approval and in accordance with Institutional Animal Care and Use Committee (IACUC) guidelines. This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Bhushan.

Additional information

Associate Editor James L. McGrath oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1028 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanataweethum, N., Zhong, F., Trang, A. et al. Towards an Insulin Resistant Adipose Model on a Chip. Cel. Mol. Bioeng. 14, 89–99 (2021). https://doi.org/10.1007/s12195-020-00636-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-020-00636-x

Keywords

Navigation