Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Genomic and Molecular Perspectives of Host-pathogen Interaction and Resistance Strategies against White Rust in Oilseed Mustard

Author(s): Chatterjee Anupriya, Nirwan Shradha, Bandyopadhyay Prasun, Agnihotri Abha*, Sharma Pankaj, Malik Zainul Abdin and Shrivastava Neeraj*

Volume 21, Issue 3, 2020

Page: [179 - 193] Pages: 15

DOI: 10.2174/1389202921999200508075410

Price: $65

Abstract

Oilseed brassicas stand as the second most valuable source of vegetable oil and the third most traded one across the globe. However, the yield can be severely affected by infections caused by phytopathogens. White rust is a major oomycete disease of oilseed brassicas resulting in up to 60% yield loss globally. So far, success in the development of oomycete resistant Brassicas through conventional breeding has been limited. Hence, there is an imperative need to blend conventional and frontier biotechnological means to breed for improved crop protection and yield.

This review provides a deep insight into the white rust disease and explains the oomycete-plant molecular events with special reference to Albugo candida describing the role of effector molecules, A. candida secretome, and disease response mechanism along with nucleotide-binding leucine-rich repeat receptor (NLR) signaling. Based on these facts, we further discussed the recent progress and future scopes of genomic approaches to transfer white rust resistance in the susceptible varieties of oilseed brassicas, while elucidating the role of resistance and susceptibility genes. Novel genomic technologies have been widely used in crop sustainability by deploying resistance in the host. Enrichment of NLR repertoire, over-expression of R genes, silencing of avirulent and disease susceptibility genes through RNA interference and CRSPR-Cas are technologies which have been successfully applied against pathogen-resistance mechanism. The article provides new insight into Albugo and Brassica genomics which could be useful for producing high yielding and WR resistant oilseed cultivars across the globe.

Keywords: Albugo candida, brassica, effector molecules, resistance (R) genes, nucleotide-binding leucine-rich repeats (NLRs), white rust resistance.

Graphical Abstract
[1]
Abrol, D.P.; Shankar, U. Integrated pest management. Breeding Oilseed Crops for Sustainable Production; Academic Press, 2016, pp. 523-549.
[http://dx.doi.org/10.1016/B978-0-12-801309-0.00020-3]
[2]
Kumar, A.; Sharma, P.; Thomas, L.; Agnihotri, A.; Banga, S.S. Proceedings of the 16th Australian Research Assembly on Brassicas, Ballarat Victoria, 2009.
[3]
Saharan, G.S.; Verma, P.R. White rusts: a review of economically important species; IDRC: Ottawa, ON, CA, 1992.
[4]
Persoon, C.H. Synopsis methodica fungorum; Leipzig, Germany, 1801, p. 2.
[5]
Kuntze, O. Revisio generum plantarum., Leipzig, Germany. Vol. 2, 1891,
[6]
Biga, M.L.B. Review of the species of the genus Albugo based on the morphology of the conidia. Sydowia, 1955, 9, 339-358.
[7]
Heller, A.; Thines, M. Evidence for the importance of enzymatic digestion of epidermal walls during subepidermal sporulation and pustule opening in white blister rusts (Albuginaceae). Mycol. Res., 2009, 113(Pt 6-7), 657-667.
[http://dx.doi.org/10.1016/j.mycres.2009.01.009] [PMID: 19484808]
[8]
Links, M.G.; Holub, E.; Jiang, R.H.; Sharpe, A.G.; Hegedus, D.; Beynon, E.; Sillito, D.; Clarke, W.E.; Uzuhashi, S.; Borhan, M.H. De novo sequence assembly of Albugo candida reveals a small genome relative to other biotrophic oomycetes. BMC Genomics, 2011, 12(1), 503.
[http://dx.doi.org/10.1186/1471-2164-12-503] [PMID: 21995639]
[9]
Choi, D.; Priest, M.J. A key to the genus Albugo. Mycotaxon, 1995, 53, 261-272.
[10]
Thines, A.; Spring, O. A revision of Albugo (Chromista, Peronosporomycetes). Mycotaxon, 2005, 92, 443-458.
[11]
Walker, J.; Priest, M.J. A new species of Albugo on Pterostylis (Orchidaceae) from Australia: confirmation of the genus Albugo on a monocotyledonous host. Australas. Plant Pathol., 2007, 36, 181-185.
[http://dx.doi.org/10.1071/AP07011]
[12]
Kamoun, S.; Furzer, O.; Jones, J.D.; Judelson, H.S.; Ali, G.S.; Dalio, R.J.; Roy, S.G.; Schena, L.; Zambounis, A.; Panabières, F.; Cahill, D.; Ruocco, M.; Figueiredo, A.; Chen, X.R.; Hulvey, J.; Stam, R.; Lamour, K.; Gijzen, M.; Tyler, B.M.; Grünwald, N.J.; Mukhtar, M.S.; Tomé, D.F.; Tör, M.; Van Den Ackerveken, G.; McDowell, J.; Daayf, F.; Fry, W.E.; Lindqvist-Kreuze, H.; Meijer, H.J.; Petre, B.; Ristaino, J.; Yoshida, K.; Birch, P.R.; Govers, F. The top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol., 2015, 16(4), 413-434.
[http://dx.doi.org/10.1111/mpp.12190] [PMID: 25178392]
[13]
McMullan, M.; Gardiner, A.; Bailey, K.; Kemen, E.; Ward, B.J.; Cevik, V.; Robert-Seilaniantz, A.; Schultz-Larsen, T.; Balmuth, A.; Holub, E.; van Oosterhout, C.; Jones, J.D. Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite. eLife, 2015, 4e, 04550.
[http://dx.doi.org/10.7554/eLife.04550] [PMID: 25723966]
[14]
Beakes, G.W.; Honda, D.; Thines, M. 3 Systematics of the Straminipila: Labyrinthulomycota, Hyphochytriomycota, and Oomycota. Systematics and evolution; Springer: Berlin, Heidelberg, 2014, pp. 39-97.
[http://dx.doi.org/10.1007/978-3-642-55318-9_3]
[15]
Adhikari, T.B.; Liu, J.Q.; Mathur, S.; Wu, C.X.; Rimmer, S.R. Genetic and molecular analyses in crosses of race 2 and race 7 of Albugo candida. Phytopathology, 2003, 93(8), 959-965.
[http://dx.doi.org/10.1094/PHYTO.2003.93.8.959] [PMID: 18943862]
[16]
Thines, M.; Voglmayr, H. An introduction to the white Blister rusts (Albuginales).Oomycete genetics and genomics: diversity, interactions and research tools;; Lamour, K.; Kamoun, S., Eds.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2009, pp. 77-92.
[http://dx.doi.org/10.1002/9780470475898.ch4]
[17]
Ploch, S.; Choi, Y.J.; Rost, C.; Shin, H.D.; Schilling, E.; Thines, M. Evolution of diversity in Albugo is driven by high host specificity and multiple speciation events on closely related Brassicaceae. Mol. Phylogenet. Evol., 2010, 57(2), 812-820.
[http://dx.doi.org/10.1016/j.ympev.2010.06.026] [PMID: 20643217]
[18]
Choi, Y.J.; Shin, H.D.; Ploch, S.; Thines, M. Three new phylogenetic lineages are the closest relatives of the widespread species Albugo candida. Fungal Biol., 2011, 115(7), 598-607.
[http://dx.doi.org/10.1016/j.funbio.2011.02.006] [PMID: 21724165]
[19]
Thines, M. Phylogeny and evolution of plant pathogenic oomycetes- a global overview. Eur. J. Plant Pathol., 2014, 138, 431-447.
[http://dx.doi.org/10.1007/s10658-013-0366-5]
[20]
Hiura, M. Biologic forms of A. candida (Pers.) Kuntze on some cruciferous plants. Shokubutsu Kenkyu Zasshi, 1930, 5, 1-20.
[21]
Pound, G.S.; Williams, P.H. Biological races of Albugo candida. Phytopathology, 1963, 53, 1146-1149.
[22]
Delwiche, P.A.; Williams, P.H. 1977. Genetic studies in Brassica nigra (L.) Koch. Cruciferae NewsLett., 1963, 2, 39.
[23]
Hill, C.B.; Crute, I.R.; Sherriff, C.; Williams, P.H. Specificity of Albugo candida and Peronospora parasitica pathotypes toward rapid-cycling crucifers. Cruciferae NewsLett., 1988, 13, 112.
[24]
Rimmer, S.R.; Mathur, S.; Wu, C.R. Virulence of isolates of Albugo candida from western Canada to Brassica species. Can. J. Plant Pathol., 2000, 22, 229-235.
[http://dx.doi.org/10.1080/07060660009500468]
[25]
Kaur, P.; Sivasithamparam, K.; Barbetti, M.J. Pathogenic behaviour of strains of Albugo candida from Brassica juncea (Indian mustard) and Raphanus raphanistrum (wild radish) in Western Australia. Australas. Plant Pathol., 2008, 37, 353-356.
[http://dx.doi.org/10.1071/AP08008]
[26]
Saharan, G.S.V.P.; Meena, P.D.; Kumar, A. White Rust of Crucifers: Biology, Ecology and Management; Springer: New Delhi, 2014.
[27]
Borhan, M.H.; Holub, E.B.; Kindrachuk, C.; Omidi, M.; Bozorgmanesh-Frad, G.; Rimmer, S.R. WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops. Mol. Plant Pathol., 2010, 11(2), 283-291.
[http://dx.doi.org/10.1111/j.1364-3703.2009.00599.x] [PMID: 20447277]
[28]
Meena, P.D.; Verma, P.R.; Saharan, G.S.; Borhan, M.H. Historical perspectives of white rust caused by Albugo candida in oilseed Brassica. J. Oilseed Brassica, 2014, 5, 1-41.
[29]
Jouet, A. Albugo candida race diversity, ploidy and host associated microbes revealed using DNA sequence capture on diseased plants in the field. New Phytol., 2019, 221(3), 1529-1543.
[http://dx.doi.org/10.1111/nph.15417] [PMID: 30288750]
[30]
Cevik, V.; Boutrot, F.; Apel, W.; Robert-Seilaniantz, A.; Furzer, O.J.; Redkar, A.; Castel, B.; Kover, P.X.; Prince, D.C.; Holub, E.B.; Jones, J.D.G. Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust (Albugo candida). Proc. Natl. Acad. Sci. USA, 2019, 116(7), 2767-2773.
[http://dx.doi.org/10.1073/pnas.1812911116] [PMID: 30692254]
[31]
Petrie, G.A. Races of Albugo candida (white rust and stag head) on cultivated cruciferae in Saskatchewan. Can. J. Plant Pathol., 1988, 10, 142-150.
[http://dx.doi.org/10.1080/07060668809501746]
[32]
Pidskalny, R.S.; Rimmer, S.R. Virulence of Albugo candida from turnip rape (Brassica campestris) and mustard (Brassica juncea) on various crucifers. Can. J. Plant Pathol., 1985, 7, 283-286.
[http://dx.doi.org/10.1080/07060668509501692]
[33]
Fawke, S.; Doumane, M.; Schornack, S. Oomycete interactions with plants: infection strategies and resistance principles. Microbiol. Mol. Biol. Rev., 2015, 79(3), 263-280.
[http://dx.doi.org/10.1128/MMBR.00010-15] [PMID: 26041933]
[34]
Kamoun, S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol., 2006, 44, 41-60.
[http://dx.doi.org/10.1146/annurev.phyto.44.070505.143436] [PMID: 16448329]
[35]
Hein, I.; Gilroy, E.M.; Armstrong, M.R.; Birch, P.R. The zig-zag-zig in oomycete-plant interactions. Mol. Plant Pathol., 2009, 10(4), 547-562.
[http://dx.doi.org/10.1111/j.1364-3703.2009.00547.x] [PMID: 19523107]
[36]
Wawra, S.; Belmonte, R.; Löbach, L.; Saraiva, M.; Willems, A.; van West, P. Secretion, delivery and function of oomycete effector proteins. Curr. Opin. Microbiol., 2012a, 15(6), 685-691.
[http://dx.doi.org/10.1016/j.mib.2012.10.008] [PMID: 23177095]
[37]
Dawkins, R. The extended phenotype: The long reach of the gene; Oxford University Press, 2016.
[38]
Birch, P.R.J.; Rehmany, A.P.; Pritchard, L.; Kamoun, S.; Beynon, J.L. Trafficking arms: oomycete effectors enter host plant cells. Trends Microbiol., 2006, 14(1), 8-11.
[http://dx.doi.org/10.1016/j.tim.2005.11.007] [PMID: 16356717]
[39]
Chisholm, S.T.; Coaker, G.; Day, B.; Staskawicz, B.J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006, 124(4), 803-814.
[http://dx.doi.org/10.1016/j.cell.2006.02.008] [PMID: 16497589]
[40]
Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol., 2015, 206(4), 1196-1206.
[http://dx.doi.org/10.1111/nph.13312] [PMID: 25655016]
[41]
O’Connell, R.J.; Panstruga, R. Tête à tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol., 2006, 171(4), 699-718.
[http://dx.doi.org/10.1111/j.1469-8137.2006.01829.x] [PMID: 16918543]
[42]
Kamoun, S. Groovy times: filamentous pathogen effectors revealed. Curr. Opin. Plant Biol., 2007, 10(4), 358-365.
[http://dx.doi.org/10.1016/j.pbi.2007.04.017] [PMID: 17611143]
[43]
Huang, J.; Chen, L.; Lu, X.; Peng, Q.; Zhang, Y.; Yang, J.; Zhang, B.Y.; Yang, B.; Waletich, J.R.; Yin, W.; Zheng, X.; Wang, Y.; Dong, S. Natural allelic variations provide insights into host adaptation of Phytophthora avirulence effector PsAvr3c. New Phytol., 2019, 221(2), 1010-1022.
[http://dx.doi.org/10.1111/nph.15414] [PMID: 30169906]
[44]
Cooper, A.J.; Latunde-Dada, A.O.; Woods-Tör, A.; Lynn, J.; Lucas, J.A.; Crute, I.R.; Holub, E.B. Basic compatibility of Albugo candida in Arabidopsis thaliana and Brassica juncea causes broad-spectrum suppression of innate immunity. Mol. Plant Microbe Interact., 2008, 21(6), 745-756.
[http://dx.doi.org/10.1094/MPMI-21-6-0745] [PMID: 18624639]
[45]
Lee, H.A.; Lee, H.Y.; Seo, E.; Lee, J.; Kim, S.B.; Oh, S.; Choi, E.; Choi, E.; Lee, S.E.; Choi, D. Current understandings of plant nonhost resistance. Mol. Plant Microbe Interact., 2017, 30(1), 5-15.
[http://dx.doi.org/10.1094/MPMI-10-16-0213-CR] [PMID: 27925500]
[46]
Wawra, S.; Trusch, F.; Matena, A.; Apostolakis, K.; Linne, U.; Zhukov, I.; Stanek, J.; Koźmiński, W.; Davidson, I.; Secombes, C.J.; Bayer, P.; van West, P. The RxLR motif of the host targeting effector AVR3a of Phytophthora infestans is cleaved before secretion. Plant Cell, 2017, 29(6), 1184-1195.
[http://dx.doi.org/10.1105/tpc.16.00552] [PMID: 28522546]
[47]
Baxter, L.; Tripathy, S.; Ishaque, N.; Boot, N.; Cabral, A.; Kemen, E.; Thines, M.; Ah-Fong, A.; Anderson, R.; Badejoko, W.; Bittner-Eddy, P.; Boore, J.L.; Chibucos, M.C.; Coates, M.; Dehal, P.; Delehaunty, K.; Dong, S.; Downton, P.; Dumas, B.; Fabro, G.; Fronick, C.; Fuerstenberg, S.I.; Fulton, L.; Gaulin, E.; Govers, F.; Hughes, L.; Humphray, S.; Jiang, R.H.Y.; Judelson, H.; Kamoun, S.; Kyung, K.; Meijer, H.; Minx, P.; Morris, P.; Nelson, J.; Phuntumart, V.; Qutob, D.; Rehmany, A.; Rougon-Cardoso, A.; Ryden, P.; Torto-Alalibo, T.; Studholme, D.; Wang, Y.; Win, J.; Wood, J.; Clifton, S.W.; Rogers, J.; Van den Ackerveken, G.; Jones, J.D.G.; McDowell, J.M.; Beynon, J.; Tyler, B.M. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science, 2010, 330(6010), 1549-1551.
[http://dx.doi.org/10.1126/science.1195203] [PMID: 21148394]
[48]
Raffaele, S.; Win, J.; Cano, L.M.; Kamoun, S. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics, 2010, 11, 637.
[http://dx.doi.org/10.1186/1471-2164-11-637] [PMID: 21080964]
[49]
Haas, B.J.; Salzberg, S.L.; Zhu, W.; Pertea, M.; Allen, J.E.; Orvis, J.; White, O.; Buell, C.R.; Wortman, J.R. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol., 2008, 9(1), R7.
[http://dx.doi.org/10.1186/gb-2008-9-1-r7] [PMID: 18190707]
[50]
Haas, B.J.; Kamoun, S.; Zody, M.C.; Jiang, R.H.; Handsaker, R.E.; Cano, L.M.; Grabherr, M.; Kodira, C.D.; Raffaele, S.; Torto-Alalibo, T.; Bozkurt, T.O.; Ah-Fong, A.M.; Alvarado, L.; Anderson, V.L.; Armstrong, M.R.; Avrova, A.; Baxter, L.; Beynon, J.; Boevink, P.C.; Bollmann, S.R.; Bos, J.I.; Bulone, V.; Cai, G.; Cakir, C.; Carrington, J.C.; Chawner, M.; Conti, L.; Costanzo, S.; Ewan, R.; Fahlgren, N.; Fischbach, M.A.; Fugelstad, J.; Gilroy, E.M.; Gnerre, S.; Green, P.J.; Grenville-Briggs, L.J.; Griffith, J.; Grünwald, N.J.; Horn, K.; Horner, N.R.; Hu, C.H.; Huitema, E.; Jeong, D.H.; Jones, A.M.; Jones, J.D.; Jones, R.W.; Karlsson, E.K.; Kunjeti, S.G.; Lamour, K.; Liu, Z.; Ma, L.; Maclean, D.; Chibucos, M.C.; McDonald, H.; McWalters, J.; Meijer, H.J.; Morgan, W.; Morris, P.F.; Munro, C.A.; O’Neill, K.; Ospina-Giraldo, M.; Pinzón, A.; Pritchard, L.; Ramsahoye, B.; Ren, Q.; Restrepo, S.; Roy, S.; Sadanandom, A.; Savidor, A.; Schornack, S.; Schwartz, D.C.; Schumann, U.D.; Schwessinger, B.; Seyer, L.; Sharpe, T.; Silvar, C.; Song, J.; Studholme, D.J.; Sykes, S.; Thines, M.; van de Vondervoort, P.J.; Phuntumart, V.; Wawra, S.; Weide, R.; Win, J.; Young, C.; Zhou, S.; Fry, W.; Meyers, B.C.; van West, P.; Ristaino, J.; Govers, F.; Birch, P.R.; Whisson, S.C.; Judelson, H.S.; Nusbaum, C. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461(7262), 393-398.
[http://dx.doi.org/10.1038/nature08358] [PMID: 19741609]
[51]
Gijzen, M.; Nürnberger, T. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry, 2006, 67(16), 1800-1807.
[http://dx.doi.org/10.1016/j.phytochem.2005.12.008] [PMID: 16430931]
[52]
Kemen, E.; Gardiner, A.; Schultz-Larsen, T.; Kemen, A.C.; Balmuth, A.L.; Robert-Seilaniantz, A.; Bailey, K.; Holub, E.; Studholme, D.J.; Maclean, D.; Jones, J.D. Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLoS Biol., 2011, 9(7) e1001094
[http://dx.doi.org/10.1371/journal.pbio.1001094] [PMID: 21750662]
[53]
Trusch, F.; Loebach, L.; Wawra, S.; Durward, E.; Wuensch, A.; Iberahim, N.A.; de Bruijn, I.; MacKenzie, K.; Willems, A.; Toloczko, A.; Diéguez-Uribeondo, J.; Rasmussen, T.; Schrader, T.; Bayer, P.; Secombes, C.J.; van West, P. Cell entry of a host-targeting protein of oomycetes requires gp96. Nat. Commun., 2018, 9(1), 2347.
[http://dx.doi.org/10.1038/s41467-018-04796-3] [PMID: 29904064]
[54]
Wang, Y.; Xu, Y.; Sun, Y.; Wang, H.; Qi, J.; Wan, B.; Ye, W.; Lin, Y.; Shao, Y.; Dong, S.; Tyler, B.M.; Wang, Y. Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat. Commun., 2018, 9(1), 594.
[http://dx.doi.org/10.1038/s41467-018-03010-8] [PMID: 29426870]
[55]
Situ, J.; Jiang, L.; Fan, X.; Yang, W.; Li, W.; Xi, P.; Deng, Y.; Kong, G.; Jiang, Z. An RXLR effector PlAvh142 from Peronophythora litchii triggers plant cell death and contributes to virulence. Mol. Plant Pathol., 2020, 21(3), 415-428.
[http://dx.doi.org/10.1111/mpp.12905] [PMID: 31912634]
[56]
Jiang, R.H.; Tripathy, S.; Govers, F.; Tyler, B.M. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc. Natl. Acad. Sci. USA, 2008, 105(12), 4874-4879.
[http://dx.doi.org/10.1073/pnas.0709303105] [PMID: 18344324]
[57]
Bailey, T.L.; Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol., 1994, 2, 28-36.
[PMID: 7584402]
[58]
Flor, H.H. The complementary genic systems in flax and flax rust. Advances in genetics; Academic Press, 1956, Vol. 8, pp. 29-54.
[59]
Petit-Houdenot, Y.; Fudal, I. Complex interactions between fungal avirulence genes and their corresponding plant resistance genes and consequences for disease resistance management. Front. Plant Sci., 2017, 8, 1072.
[http://dx.doi.org/10.3389/fpls.2017.01072] [PMID: 28670324]
[60]
Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol., 2005, 43, 205-227.
[http://dx.doi.org/10.1146/annurev.phyto.43.040204.135923] [PMID: 16078883]
[61]
Biffen, R.H. Mendel’s laws of inheritance and wheat breeding. J. Agric. Sci., 1905, 1, 4-48.
[http://dx.doi.org/10.1017/S0021859600000137]
[62]
Dong, X. NPR1, all things considered. Curr. Opin. Plant Biol., 2004, 7(5), 547-552.
[http://dx.doi.org/10.1016/j.pbi.2004.07.005] [PMID: 15337097]
[63]
Shao, Z.Q.; Xue, J.Y.; Wu, P.; Zhang, Y.M.; Wu, Y.; Hang, Y.Y.; Wang, B.; Chen, J.Q. Large‐scale analyses of angiosperm nucleotide‐binding site‐leucine‐rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol., 2016, 170(4), 2095-2109.
[http://dx.doi.org/10.1104/pp.15.01487] [PMID: 26839128]
[64]
Takken, F.L.; Goverse, A. How to build a pathogen detector: structural basis of NB-LRR function. Curr. Opin. Plant Biol., 2012, 15(4), 375-384.
[http://dx.doi.org/10.1016/j.pbi.2012.05.001] [PMID: 22658703]
[65]
Jacob, F.; Vernaldi, S.; Maekawa, T. Evolution and conservation of plant NLR functions. Front. Immunol., 2013, 4, 297.
[http://dx.doi.org/10.3389/fimmu.2013.00297] [PMID: 24093022]
[66]
Cui, H.; Tsuda, K.; Parker, J.E. Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol., 2015, 66, 487-511.
[http://dx.doi.org/10.1146/annurev-arplant-050213-040012] [PMID: 25494461]
[67]
Kobe, B.; Deisenhofer, J. The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci., 1994, 19(10), 415-421.
[http://dx.doi.org/10.1016/0968-0004(94)90090-6] [PMID: 7817399]
[68]
Kobe, B.; Deisenhofer, J. Proteins with leucine-rich repeats Current Opin. Struc. Biol., 1995, 1. 5(3), 409-16.
[http://dx.doi.org/10.1016/0959-440X(95)80105-7]
[69]
Borhan, M.H.; Holub, E.B.; Beynon, J.L.; Rozwadowski, K.; Rimmer, S.R. The arabidopsis TIR-NB-LRR gene RAC1 confers resistance to Albugo candida (white rust) and is dependent on EDS1 but not PAD4. Mol. Plant Microbe Interact., 2004, 17(7), 711-719.
[http://dx.doi.org/10.1094/MPMI.2004.17.7.711] [PMID: 15242165]
[70]
Herlihy, J.; Ludwig, N.R.; van den Ackerveken, G.; McDowell, J.M. Oomycetes used in arabidopsis research. Arabidopsis Book, 2019, (17), pp 1-26.
[71]
Meyers, B.C.; Kozik, A.; Griego, A.; Kuang, H.; Michelmore, R.W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 2003, 15(4), 809-834.
[http://dx.doi.org/10.1105/tpc.009308] [PMID: 12671079]
[72]
Wiermer, M.; Feys, B.J.; Parker, J.E. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol., 2005, 8(4), 383-389.
[http://dx.doi.org/10.1016/j.pbi.2005.05.010] [PMID: 15939664]
[73]
Tran, D.T.N.; Chung, E-H.; Habring-Müller, A.; Demar, M.; Schwab, R.; Dangl, J.L.; Weigel, D.; Chae, E. Activation of a plant NLR complex through heteromeric association with an autoimmune risk variant of another NLR. Curr. Biol., 2017, 27(8), 1148-1160.
[http://dx.doi.org/10.1016/j.cub.2017.03.018] [PMID: 28416116]
[74]
de Araújo, A.C.; Fonseca, F.C.D.A.; Cotta, M.G.; Alves, G.S.C.; Miller, R.N.G. Plant NLR receptor proteins and their potential in the development of durable genetic resistance to biotic stresses. Biotechnol. Res. Innov., In press
[http://dx.doi.org/10.1016/j.biori.2020.01.002]]
[75]
Michelmore, R.W.; Christopoulou, M.; Caldwell, K.S. Impacts of resistance gene genetics, function, and evolution on a durable future. Annu. Rev. Phytopathol., 2013, 51, 291-319.
[http://dx.doi.org/10.1146/annurev-phyto-082712-102334] [PMID: 23682913]
[76]
Panjabi-Massand, P.; Yadava, S.K.; Sharma, P.; Kaur, A.; Kumar, A.; Arumugam, N.; Sodhi, Y.S.; Mukhopadhyay, A.; Gupta, V.; Pradhan, A.K.; Pental, D. Molecular mapping reveals two independent loci conferring resistance to Albugo candida in the east European germplasm of oilseed mustard Brassica juncea. Theor. Appl. Genet., 2010, 121(1), 137-145.
[http://dx.doi.org/10.1007/s00122-010-1297-6] [PMID: 20213517]
[77]
Arora, H.; Padmaja, K.L.; Paritosh, K.; Mukhi, N.; Tewari, A.K.; Mukhopadhyay, A.; Gupta, V.; Pradhan, A.K.; Pental, D. BjuWRR1, a CC-NB-LRR gene identified in Brassica juncea, confers resistance to white rust caused by Albugo candida. Theor. Appl. Genet., 2019, 132(8), 2223-2236.
[http://dx.doi.org/10.1007/s00122-019-03350-z] [PMID: 31049632]
[78]
Cesari, S. Multiple strategies for pathogen perception by plant immune receptors. New Phytol., 2018, 219(1), 17-24.
[http://dx.doi.org/10.1111/nph.14877] [PMID: 29131341]
[79]
Dong, O.X.; Ronald, P.C. Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiol., 2019, 180(1), 26-38.
[http://dx.doi.org/10.1104/pp.18.01224] [PMID: 30867331]
[80]
van West, P.; Kamoun, S.; van ’t Klooster, J.W.; Govers, F. Internuclear gene silencing in Phytophthora infestans. Mol. Cell, 1999, 3(3), 339-348.
[http://dx.doi.org/10.1016/S1097-2765(00)80461-X] [PMID: 10198636]
[81]
Vats, S.; Kumawat, S.; Kumar, V.; Patil, G.B.; Joshi, T.; Sonah, H.; Sharma, T.R.; Deshmukh, R. Genome editing in plants: exploration of technological advancements and challenges. Cells, 2019, 8(11), 1386.
[http://dx.doi.org/10.3390/cells8111386] [PMID: 31689989]
[82]
Chen, Z.J.; Ni, Z. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays, 2006, 28(3), 240-252.
[http://dx.doi.org/10.1002/bies.20374] [PMID: 16479580]
[83]
Augustine, R.; Bisht, N.C. Targeted silencing of genes in polyploids: lessons learned from Brassica juncea-glucosinolate system. Plant Cell Rep., 2019, 38(1), 51-57.
[http://dx.doi.org/10.1007/s00299-018-2348-8] [PMID: 30306251]
[84]
Castel, B. Natural and CRISPR-induced genetic variation for plant immunity, PhD Thesis, University of East Anglia,. 2019.
[85]
Wu, C-H.; Krasileva, K.V.; Banfield, M.J.; Terauchi, R.; Kamoun, S. The “sensor domains” of plant NLR proteins: more than decoys? Front. Plant Sci., 2015, 6, 134.
[http://dx.doi.org/10.3389/fpls.2015.00134] [PMID: 25798142]
[86]
Kamoun, S. Molecular genetics of pathogenic oomycetes. Eukaryot. Cell, 2003, 2(2), 191-199.
[http://dx.doi.org/10.1128/EC.2.2.191-199.2003] [PMID: 12684368]
[87]
Ali, Z.; Eid, A.; Ali, S.; Mahfouz, M.M. Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis. Virus Res., 2018, 244, 333-337.
[http://dx.doi.org/10.1016/j.virusres.2017.10.009] [PMID: 29051052]
[88]
Ma, C.; Zhu, C.; Zheng, M.; Liu, M.; Zhang, D.; Liu, B.; Li, Q.; Si, J.; Ren, X.; Song, H. CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Hortic. Res., 2019, 6, 20.
[http://dx.doi.org/10.1038/s41438-018-0107-1] [PMID: 30729010]
[89]
Lawrenson, T.; Shorinola, O.; Stacey, N.; Li, C.; Østergaard, L.; Patron, N.; Uauy, C.; Harwood, W. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol., 2015, 16, 258-270.
[http://dx.doi.org/10.1186/s13059-015-0826-7] [PMID: 26616834]
[90]
Van Vu, T.; Sivankalyani, V.; Kim, E.J.; Tran, M.T.; Kim, J.; Sung, Y.W.; Doan, D.T.H.; Kim, J.Y. Highly efficient homology-directed repair using transient CRISPR/Cpf1-geminiviral replicon in tomato. Plant Biotechnol. J., 2020, 521419
[http://dx.doi.org/10.1101/521419]
[91]
Neik, T.X.; Barbetti, M.J.; Batley, J. Current status and challenges in identifying disease resistance genes in Brassica napus. Front. Plant Sci., 2017, 8, 1788.
[http://dx.doi.org/10.3389/fpls.2017.01788] [PMID: 29163558]
[92]
Wu, Z.; Li, M.; Dong, O.X.; Xia, S.; Liang, W.; Bao, Y.; Wasteneys, G.; Li, X. Differential regulation of TNL-mediated immune signaling by redundant helper CNLs. New Phytol., 2019, 222(2), 938-953.
[http://dx.doi.org/10.1111/nph.15665] [PMID: 30585636]
[93]
Cesari, S.; Bernoux, M.; Moncuquet, P.; Kroj, T.; Dodds, P.N. A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis. Front. Plant Sci., 2014, 5, 606.
[http://dx.doi.org/10.3389/fpls.2014.00606] [PMID: 25506347]
[94]
Castel, B.; Tomlinson, L.; Locci, F.; Yang, Y.; Jones, J.D.G. Optimization of T-DNA architecture for Cas9-mediated mutagenesis in Arabidopsis. PLoS One, 2019, 14(1)e0204778
[http://dx.doi.org/10.1371/journal.pone.0204778] [PMID: 30625150]
[95]
Orozco-Mosqueda, M.D.C.; Rocha-Granados, M.D.C.; Glick, B.R.; Santoyo, G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol. Res., 2018, 208, 25-31.
[http://dx.doi.org/10.1016/j.micres.2018.01.005] [PMID: 29551209]
[96]
Bandyopadhyay, P.; Bhuyan, S.K.; Yadava, P.K.; Varma, A.; Tuteja, N. Emergence of plant and rhizospheric microbiota as stable interactomes. Protoplasma, 2017, 254(2), 617-626.
[http://dx.doi.org/10.1007/s00709-016-1003-x] [PMID: 27468993]
[97]
Rybakova, D.; Mancinelli, R.; Wikström, M.; Birch-Jensen, A.S.; Postma, J.; Ehlers, R.U.; Goertz, S.; Berg, G. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome, 2017, 5(1), 104.
[http://dx.doi.org/10.1186/s40168-017-0310-6] [PMID: 28859671]
[98]
Links, M.G.; Demeke, T.; Gräfenhan, T.; Hill, J.E.; Hemmingsen, S.M.; Dumonceaux, T.J. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds. New Phytol., 2014, 202(2), 542-553.
[http://dx.doi.org/10.1111/nph.12693] [PMID: 24444052]
[99]
Kumar, P.; Yadava, S.K.; Singh, P.; Bhayana, L.; Mukhopadhyay, A.; Gupta, V. A chromosome-scale assembly of allotetraploid Brassica juncea (AABB) elucidates comparative architecture of the A and B genomes. bioRxiv, 2019.
[http://dx.doi.org/10.1101/681080]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy