Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T06:36:30.461Z Has data issue: false hasContentIssue false

Reducing competition in a crop–livestock–forest integrated system by thinning eucalyptus trees

Published online by Cambridge University Press:  13 July 2020

José Ricardo Macedo Pezzopane*
Affiliation:
Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, PO Box: 339, 13563-776, São Carlos, SP, Brazil
Willian Lucas Bonani
Affiliation:
UNIARA, Rua Carlos Gomes, 1338 – Centro, 14801-340, Araraquara, SP, Brazil
Cristiam Bosi
Affiliation:
ESALQ, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
Eduardo Lopes Fernandes da Rocha
Affiliation:
UNICEP, Rua Miguel Petroni, 5111, 13563-470, São Carlos, SP, Brazil
Alberto Carlos de Campos Bernardi
Affiliation:
Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, PO Box: 339, 13563-776, São Carlos, SP, Brazil
Patricia Perondi Anchão Oliveira
Affiliation:
Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, PO Box: 339, 13563-776, São Carlos, SP, Brazil
André de Faria Pedroso
Affiliation:
Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, PO Box: 339, 13563-776, São Carlos, SP, Brazil
*
*Corresponding author. Email: jose.pezzopane@embrapa.br

Abstract

The goal of this study was to evaluate the effects of thinning eucalyptus trees on yield and nutritive value of corn for silage and palisadegrass in a crop–livestock–forest integrated system and to evaluate the total aboveground biomass yield in systems with and without trees. Plant variables, as well as the incidence of photosynthetically active radiation (PAR) and soil moisture, were evaluated between October 2016 and March 2018 in São Carlos, Brazil, in a crop–livestock–forest and a crop–livestock system. In the crop–livestock–forest system, eucalyptus trees (Eucalyptus urograndis clone GG100) were planted in April 2011, in single rows, with 15 × 2 m spacing. In 2016, the trees were thinned, and the spacing was changed to 15 × 4 m. The treatments comprised measurements at 0.00, 3.75, 7.50, and 11.25 m from the trees of the North row in the integrated crop–livestock–forest (iCLF) system and integrated crop–livestock (iCL) system. Palisadegrass (Urochloa brizantha) was sown after harvesting the corn. Corn yields were similar between treatments, with an average of 13.6 Mg ha−1. Corn for silage presented a higher percentage of grain in total biomass in the crop–livestock–forest positions (41.4 and 42.1%) than in the crop–livestock system (35.6%). No differences in forage accumulation were observed. Crude protein content in corn for silage and palisadegrass was higher in the crop–livestock–forest treatments than in the crop–livestock system. Such results indicate that thinning was favorable to production in the crop–livestock–forest system. Total aboveground biomass yield was higher in the iCLF system, indicating better land use for this type of integrated system.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, R.G., Oliveira, P.P.A., Macedo, M.C.M. and Pezzopane, J.R.M. (2011). Recuperação de pastagens degradadas e impactos da pecuária na emissão de gases de efeito estufa. In Simpósio internacional de melhoramento de forrageiras. Campo Grande: Embrapa Gado de Corte, pp. 384400.Google Scholar
Amatya, G., Chang, S.X., Beare, M.H. and Mead, D.J. (2002). Soil properties under Pinus radiata-ryegrass silvopastoral system in New Zealand. Part II. C and N of soil microbial biomass, and soil N dynamics. Agroforestry Systems 54, 149160. https://doi.org/10.1023/A:1015076607090CrossRefGoogle Scholar
AOAC - Association of Official Analytical Chemistry (1990). Official Methods of Analyses. Rockville: AOAC.Google Scholar
Balbino, L.C., Cordeiro, L.A.M., Silva, V.P., Moraes, A., Martinez, G.B., Alvarenga, R.C., Kichel, N.A., Fontaneli, R.S., Santos, H.P., Franchini, J.C. and Galerani, P.R. (2011). Evolução tecnológica e arranjos produtivos de sistemas de integracão lavoura-pecuária-floresta no Brasil. Pesquisa Agropecuaria Brasileira 46, 112. https://doi.org/10.1590/S0100-204X2011001000001CrossRefGoogle Scholar
Barro, R.S., Saibro, J.C.D., Medeiros, R.B.D., Silva, J.L.S.D. and Varella, A.C. (2008). Rendimento de forragem e valor nutritivo de gramíneas anuais de estação fria submetidas a sombreamento por Pinus elliottii e ao sol pleno. Revista Brasileira de Zootecnia 37, 17211727.CrossRefGoogle Scholar
Benavides, R., Douglas, G.B. and Osoro, K. (2009). Silvopastoralism in New Zealand: review of effects of evergreen and deciduous trees on pasture dynamics. Agroforestry Systems 76, 327350. https://doi.org/10.1007/s10457-008-9186-6CrossRefGoogle Scholar
Bosi, C., Pezzopane, J.R.M., Sentelhas, P.C., Santos, P.M. and Nicodemo, M.L.F. (2014). Produtividade e características biométricas do capim-braquiária em sistema silvipastoril. Pesquisa Agropecuaria Brasileira 49, 449456. https://doi.org/10.1590/S0100-204X2014000600006CrossRefGoogle Scholar
Bosi, C., Pezzopane, J.R.M. and Sentelhas, P.C. (2019). Soil water availability in a full sun pasture and in a silvopastoral system with eucalyptus. Agroforestry Systems 94, 429440. https://doi.org/10.1007/s10457-019-00402-7CrossRefGoogle Scholar
Bosi, C., Pezzopane, J.R.M. and Sentelhas, P.C. (2020). Silvopastoral system with Eucalyptus as a strategy for mitigating the effects of climate change on Brazilian pasturelands. Anais da Academia Brasileira de Ciências 92, e20180425. https://doi.org/ 10.1590/0001-3765202020180425CrossRefGoogle ScholarPubMed
Calderano Filho, B., Santos, H.G., Fonseca, O.O.M., Santos, R.D., Primavesi, O. and Primavesi, A.C. (1998). Os solos da Fazenda Canchim, Centro de Pesquisa de Pecuária do Sudeste, São Carlos, SP: Levantamento semidetalhado, propriedades e potenciais. Rio de Janeiro: Embrapa.Google Scholar
Carvalho, J.L.N, Raucci, G.S., Cerri, C.E.P., Bernoux, M., Feigl, B.J., Wruck, F.J. and Cerri, C.C. (2010). Impact of pasture, agriculture, and crop-livestock systems on soil C stocks in Brazil. Soil & Tillage Research 110, 175186. https://doi.org/10.1016/j.still.2010.07.011CrossRefGoogle Scholar
Figueiredo, E.B., Jayasundara, S., Bordonal, R.O., Reis, R.A., Wagner-Riddle, C. and La Scala, N. (2017). Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. Journal of Cleaner Production 142, 420431. https://doi.org/10.1016/j.jclepro.2016.03.132CrossRefGoogle Scholar
Gillespie, A.R., Jose, S., Mengel, D.B., Hoover, W.L., Pope, P.E., Seifert, J.R., Biehle, D.J., Stall, T. and Benjamin, T.J. (2000). Defining competition vectors in a temperate alley cropping system in the mid-western USA: 1. Production physiology. Agroforestry Systems 48, 2540.CrossRefGoogle Scholar
Garrett, R.D., Nilesb, M.T., Gila, J.D.B., Gaudine, A., Chaplin-Kramerf, R., Assmanng, A., Assmannh, T.S., Brewere, K., Carvalhoi, P.C.F., Cortnera, O., Dynesj, R., Garbachk, K., Kebreabl, E., Muellerm, N., Petersone, C., Reisn, J.C., Snowj, V. and Valentimo, J. (2017). Social and ecological analysis of commercial integrated crop-livestock systems: Current knowledge and remaining uncertainty. Agricultural Systems 155, 136146. https://doi.org/10.1016/j.agsy.2017.05.003CrossRefGoogle Scholar
Gil, J., Siebold, M. and Berger, T. (2015). Adoption and development of integrated crop-livestock-forestry systems in Mato Grosso, Brazil. Agriculture Ecosystems and Environment 199, 394406. https://doi.org/10.1016/j.agee.2014.10.008CrossRefGoogle Scholar
Guenni, O., Seiter, S. and Figueroa, R. (2008). Growth responses of three Brachiaria species to light intensity and nitrogen supply. Tropical Grasslands 42, 7587.Google Scholar
Jose, S., Gillespie, A.R. and Pallardy, S.G. (2004). Interspecific interactions in temperate agroforestry. Agroforestry Systems 61, 237255. https://doi.org/10.1023/B:AGFO.0000029002.85273.9bGoogle Scholar
McIvor, I., Douglas, G.B., Hurst, S., Hussain, Z. and Foote, A.G. (2008). Structural root growth of young veronese poplars on erodible slopes in the southern North Island, New Zealand. Agroforestry Systems 72, 7586. https://doi.org/10.1007/s10457-007-9090-5CrossRefGoogle Scholar
Magalhães, C.A.S., Pedreira, B.C., Tonini, H. and Farias Neto, A.L. (2018). Crop, livestock and forestry performance assessment under different production systems in the north of Mato Grosso, Brazil. Agroforestry Systems In press. https://doi.org/10.1007/s10457-018-0311-x(01234Google Scholar
Moore, J.E. and Mott, G.O. (1974). Recovery of residual organic matter from in vitro digestion of forages. Dairy Science 57, 12581259.CrossRefGoogle Scholar
Moreira, E.D.S., Gontijo Neto, M.M., Lana, A.M.Q., Borghi, E., Santos, C.A., Alvarenga, R.C. and Viana, M.C.M. (2018). Production efficiency and agronomic attributes of corn in an integrated crop-livestock-forestry system. Pesquisa Agropecuaria Brasileira 53, 419426. https://doi.org/10.1590/s0100-204x2018000400003CrossRefGoogle Scholar
Nicodemo, M.L.F., Castiglioni, P.P., Pezzopane, J.R.M., Tholon, P. and Carpanezzi, A.A. (2016). Reducing competition in agroforestry by pruning native trees. Revista Arvore 40, 509518. https://doi.org/10.1590/0100-67622016000300014CrossRefGoogle Scholar
Paciullo, D.S.C., Carvalho, C.A.B., Aroeira, L.J.M., Morenz, M.J.F., Lopez, F.C.F and Rossiello, R.O.P. (2007). Morfofisiologia e valor nutritivo do capim-braquiária sob sombreamento natural e a pleno sol. Pesquisa Agropecuaria Brasileira 42, 573579. https://doi.org/10.1590/S0100-204X2007000400016CrossRefGoogle Scholar
Paciullo, D.S.C., Gomide, C.A.M., Castro, C.R.T., Fernandes, P.B., Muller, M.D., Pires, M.F.A., Fernandes, E.M. and Xavier, D.F. (2011). Características produtivas e nutricionais do pasto em sistema agrossilvipastoril, conforme a distância das árvores. Pesquisa Agropecuaria Brasileira 46, 11761183. https://doi.org/10.1590/S0100204X2011001000009CrossRefGoogle Scholar
Pedreira, B.C., Domiciano, L.F., Rodrigues, R.A.R., Moraes, S.R.G., Magalhaes, C.A.S., Matos, E.S. and Zolin, C.A. (2017). Integração lavoura-pecuária: novas tendências. In Medeiros, F.H.V.et al. (eds), Novos sistemas de produção. Lavras: UFLA, pp. 128160.Google Scholar
Pezzopane, J.R.M., Bosi, C., Nicodemo, M.L.F., Santos, P.M., Cruz, P.G. and Parmejiani, R.S. (2015). Microclimate and soil moisture in a silvopastoral system in southeastern Brazil. Bragantia 74, 110119. https://doi.org/10.1590/1678-4499.0334CrossRefGoogle Scholar
Pezzopane, J.R.M., Bosi, C., Bernardi, A.C.C., Muller, M.D. and Oliveira, P.P.A. (2018). Biomass and carbon pools of Eucalyptus trees in integrated crop-livestock-forest systems. In Laclau, J.P. (ed.), Eucalyptus 2018, Montpellier. Eucalyptus 2018 - Managing Eucalyptus Plantations under Global Changes - Abstracts Book. Montpellier: Cirad, 2018. v. 1. pp. 3737.Google Scholar
Pezzopane, J.R.M., Bernardi, A.C.C., Bosi, C., Oliveira, P.P.A., Marconato, M.H., Pedroso, A.F. and Esteves, S.N. (2019). Forage productivity and nutritive value during pasture renovation in integrated systems. Agroforestry Systems 93, 3949. https://doi.org/10.1007/s10457-017-0149-7CrossRefGoogle Scholar
Pollock, K.M., Mead, D.J. and McKenzie, B.A. (2009). Soil moisture and water use by pastures and silvopastures in a sub-humid temperate climate in New Zealand. Agroforestry Systems 75, 223238. https://doi.org/10.1007/s10457-008-9172-zCrossRefGoogle Scholar
Prasad, J.V.N.S., Korwar, G.R., Rao, K.V., Mandal, U.K., Rao, C.A.R., Rao, G.R., Ramakrishna, Y.S., Venkateswarlu, B., Rao, S.N., Kulkarni, H.D. and Rao, M.R. (2010). Tree row spacing affected agronomic and economic performance of Eucalyptus-based agroforestry in Andhra Pradesh, Southern India. Agroforestry Systems 78, 253267. https://doi.org/10.1007/s10457-009-9275-1CrossRefGoogle Scholar
Oliveira, T.K., Macedo, R.L.G., Venturin, N. and Higashikawa, E.M. (2009). Desempenho silvicultural e produtivo de eucalipto sob diferentes arranjos espaciais em sistema agrossilvipastoril. Pesquisa Florestal Brasileira 60, 19. https://doi.org/10.4336/2009.pbf.60.01Google Scholar
Reynolds, P.E., Simpson, J.A., Thevathasan, N.V. and Andrew, M.G. (2007). Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecological Engineering 29, 362371. https://doi.org/10.1016/j.ecoleng.2006.09.024CrossRefGoogle Scholar
Rivest, D., Paquette, A., Moreno, G. and Messier, C. (2013). A meta-analysis reveals mostly neutral influence of scattered trees on pasture yield along with some contrasted effects depending on functional groups and rainfall conditions. Agriculture Ecosystems and Environment 165, 7479. https://doi.org/10.1016/j.agee.2012.12.010CrossRefGoogle Scholar
Salton, J.C., Mercante, F.M., Tomazi, M., Zanatta, J.A., Concenço, G., Silva, W.M. and Retore, M. (2014). Integrated crop-livestock system in tropical Brazil: Toward a sustainable production system. Agriculture Ecosystems and Environment 190, 7079. https://doi.org/10.1016/j.agee.2013.09.023CrossRefGoogle Scholar
Sangoi, L., Gracietti, M.A., Rampazzo, C. and Bianchet, P. (2002). Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Research 79, 3951. https://doi.org/10.1016/S0378-4290(02)00124-7CrossRefGoogle Scholar
Santos, D.C., Guimarães Junior, R., Vilela, L., Maciel, G.A. and França, A.F.S. (2018). Implementation of silvopastoral systems in Brazil with Eucalyptus urograndis and Brachiaria brizantha: Productivity of forage and an exploratory test of the animal response. Agriculture Ecosystems and Environment 266, 174180. https://doi.org/10.1016/j.agee.2018.07.017CrossRefGoogle Scholar
Schlotzhauer, S.D. and Littell, R.C. (1987). SAS System for Elementary Statistical Analysis. Cary, NC: SAS Institute Inc.Google Scholar
Silva, V.P., De Moraes, A., Moletta, J.L., Pelissari, A., Dieckow, J. and Oliveira, E.B. (2015). Produtividade do milho em um sistema silviagrícola nos Campos Gerais, PR. Scientia Agraria 16, 2732. https://doi.org/10.5380/rsa.v16i1.41044Google Scholar
Simão, E.P., Gontijo Neto, M.M., Oliveira Neto, S.N., Galvão, J.C.C., Borghi, E., Martins, D.C. and Resende, A.V. (2018). Produção de grãos e forragem em função da disponibilidade luminosa em sistema de integração lavoura-pecuária-floresta. Revista Brasileira De Milho e Sorgo 17, 111121. http://dx.doi.org/10.18512/1980-6477/rbms.v17n1p111-121CrossRefGoogle Scholar
Supplementary material: File

Pezzopane et al. supplementary material

Pezzopane et al. supplementary material

Download Pezzopane et al. supplementary material(File)
File 4 MB