Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A redox switch regulates the structure and function of anti-apoptotic BFL-1

Abstract

Apoptosis is regulated by BCL-2 family proteins. Anti-apoptotic members suppress cell death by deploying a surface groove to capture the critical BH3 α-helix of pro-apoptotic members. Cancer cells hijack this mechanism by overexpressing anti-apoptotic BCL-2 family proteins to enforce cellular immortality. We previously identified and harnessed a unique cysteine (C55) in the groove of anti-apoptotic BFL-1 to selectively neutralize its oncogenic activity using a covalent stapled-peptide inhibitor. Here, we find that disulfide bonding between a native cysteine pair at the groove (C55) and C-terminal α9 helix (C175) of BFL-1 operates as a redox switch to control the accessibility of the anti-apoptotic pocket. Reducing the C55–C175 disulfide triggers α9 release, which promotes mitochondrial translocation, groove exposure for BH3 interaction and inhibition of mitochondrial permeabilization by pro-apoptotic BAX. C55–C175 disulfide formation in an oxidative cellular environment abrogates the ability of BFL-1 to bind BH3 domains. Thus, we identify a mechanism of conformational control of BFL-1 by an intramolecular redox switch.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A covalent α9-in-groove interaction is mediated by C55 and C175 of BFL-1.
Fig. 2: A redox switch controls α9 occupancy of the canonical groove of BFL-1.
Fig. 3: Disulfide formation regulates the stability and BH3-binding activity of BFL-1.
Fig. 4: BFL-1 suppression of BAX-mediated membrane permeabilization is regulated by the disposition of its α9 domain.
Fig. 5: A C55–C175 redox switch controls BFL-1 translocation and membrane protection in isolated mitochondria and the BH3-binding functionality of BFL-1 in cells.

Similar content being viewed by others

Data availability

HXMS data have been deposited to the PRIDE database with identifier code PXD016059. All data generated or analyzed for this study are included in this manuscript and its supplementary files. Source data are available with the paper online.

References

  1. Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Leber, B., Lin, J. & Andrews, D. W. Still embedded together binding to membranes regulates Bcl-2 protein interactions. Oncogene 29, 5221–5230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kalkavan, H. & Green, D. R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 25, 46–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Walensky, L. D. & Gavathiotis, E. BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem. Sci. 36, 642–652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, K., Gross, A., Waksman, G. & Korsmeyer, S. J. Mutagenesis of the BH3 domain of BAX identifies residues critical for dimerization and killing. Mol. Cell. Biol. 18, 6083–6089 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sattler, M. et al. Structure of Bcl-xL–Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Li, H., Zhu, H., Xu, C. J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Zhong, Q., Gao, W., Du, F. & Wang, X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121, 1085–1095 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Cohen, D. T., Wales, T. E., McHenry, M. W., Engen, J. R. & Walensky, L. D. Site-dependent cysteine lipidation potentiates the activation of proapoptotic BAX. Cell Rep. 30, 3229–3239.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frohlich, M., Dejanovic, B., Kashkar, H., Schwarz, G. & Nussberger, S. S-palmitoylation represents a novel mechanism regulating the mitochondrial targeting of BAX and initiation of apoptosis. Cell Death Dis. 5, e1057 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nie, C. et al. Cysteine 62 of Bax is critical for its conformational activation and its proapoptotic activity in response to H2O2-induced apoptosis. J. Biol. Chem. 283, 15359–15369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luanpitpong, S. et al. Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells. Mol. Biol. Cell 24, 858–869 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Azad, N. et al. S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. J. Biol. Chem. 281, 34124–34134 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, S. et al. Allosteric inhibition of antiapoptotic MCL-1. Nat. Struct. Mol. Biol. 23, 600–607 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guerra, R. M. et al. Precision targeting of BFL-1/A1 and an ATM co-dependency in human cancer. Cell Rep. 24, 3393–3403.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harvey, E. P. et al. Crystal structures of anti-apoptotic BFL-1 and its complex with a covalent stapled peptide inhibitor. Structure 26, 153–160.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Huhn, A. J., Guerra, R. M., Harvey, E. P., Bird, G. H. & Walensky, L. D. Selective covalent targeting of anti-apoptotic BFL-1 by cysteine-reactive stapled peptide inhibitors. Cell Chem. Biol. 23, 1123–1134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suzuki, M., Youle, R. J. & Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645–654 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Denisov, A. Y. et al. Solution structure of human BCL-w: modulation of ligand binding by the C-terminal helix. J. Biol. Chem. 278, 21124–21128 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Yao, Y. et al. Conformation of BCL-XL upon membrane integration. J. Mol. Biol. 427, 2262–2270 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mohanasundaram, K. A. et al. Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins. Front. Pharmacol. 6, 1 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Edlich, F. et al. Bcl-xL retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, 104–116 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herman, M. D. et al. Completing the family portrait of the anti-apoptotic Bcl-2 proteins: crystal structure of human Bfl-1 in complex with Bim. FEBS Lett. 582, 3590–3594 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Hinds, M. G. et al. The structure of Bcl-w reveals a role for the C-terminal residues in modulating biological activity. EMBO J. 22, 1497–1507 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walensky, L. D. et al. A stapled BID BH3 helix directly binds and activates BAX. Mol. Cell 24, 199–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Lovell, J. F. et al. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135, 1074–1084 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Brien, G. et al. C-terminal residues regulate localization and function of the antiapoptotic protein Bfl-1. J. Biol. Chem. 284, 30257–30263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ottina, E., Tischner, D., Herold, M. J. & Villunger, A. A1/Bfl-1 in leukocyte development and cell death. Exp. Cell. Res. 318, 1291–1303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schenk, R. L. et al. Characterisation of mice lacking all functional isoforms of the pro-survival BCL-2 family member A1 reveals minor defects in the haematopoietic compartment. Cell Death Differ. 24, 534–545 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yecies, D., Carlson, N. E., Deng, J. & Letai, A. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood 115, 3304–3313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fan, G. et al. Defective ubiquitin-mediated degradation of antiapoptotic Bfl-1 predisposes to lymphoma. Blood 115, 3559–3569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haq, R. et al. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc. Natl Acad. Sci. USA 110, 4321–4326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Esteve-Arenys, A. et al. The BET bromodomain inhibitor CPI203 overcomes resistance to ABT-199 (venetoclax) by downregulation of BFL-1/A1 in in vitro and in vivo models of MYC+/BCL2+ double hit lymphoma. Oncogene 37, 1830–1844 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Kutuk, O. & Letai, A. Regulation of Bcl-2 family proteins by posttranslational modifications. Curr. Mol. Med. 8, 102–118 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Mason, K. D. et al. Programmed anuclear cell death delimits platelet life span. Cell 128, 1173–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Kotschy, A. et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538, 477–482 (2016).

    Article  PubMed  CAS  Google Scholar 

  44. Bechtel, T. J. & Weerapana, E. From structure to redox: The diverse functional roles of disulfides and implications in disease. Proteomics 17, 1600391 (2017).

    Article  CAS  Google Scholar 

  45. Fra, A., Yoboue, E. D. & Sitia, R. Cysteines as redox molecular switches and targets of disease. Front. Mol. Neurosci. 10, 167 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Harvey, E. P. et al. Identification of a covalent molecular inhibitor of anti-apoptotic BFL-1 by disulfide tethering. Cell Chem. Biol. 27, 647–656.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pitter, K., Bernal, F., Labelle, J. & Walensky, L. D. Dissection of the BCL-2 family signaling network with stabilized α-helices of BCL-2 domains. Methods Enzymol. 446, 387–408 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Barclay, L. A. et al. Inhibition of pro-apoptotic BAX by a noncanonical interaction mechanism. Mol. Cell 57, 873–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wales, T. E. & Engen, J. R. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom. Rev. 25, 158–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Cohen, N. A. et al. A competitive stapled peptide screen identifies a selective small molecule that overcomes MCL-1-dependent leukemia cell survival. Chem. Biol. 19, 1175–1186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leshchiner, E. S., Braun, C. R., Bird, G. H. & Walensky, L. D. Direct activation of full-length proapoptotic BAK. Proc. Natl Acad. Sci. USA 110, E986–E995 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Smith for assistance with figure preparation. The study was funded by NIH grant R35CA197583 and a Leukemia and Lymphoma Society Translational Research Program grant to L.D.W., an American Cancer Society Postdoctoral Fellowship Award to K.J.K. and NIH grant R50CA211399 to G.H.B. Additional support was provided by a research collaboration between J.R.E. and the Waters Corporation. We also thank the Wolpoff Family Foundation, Jim and Lisa LaTorre, the family of Ivo Coll and the Todd J. Schwartz Memorial Fund for their financial contributions to our cancer chemical biology research.

Author information

Authors and Affiliations

Authors

Contributions

K.J.K. and L.D.W. designed the study. K.J.K. produced the BFL-1 proteins and performed all biochemical, mitochondrial and cellular experiments. G.H.B. generated peptides. K.J.K. and T.E.W. performed the HXMS analyses under the supervision of J.R.E. L.D.W. and K.J.K. wrote the manuscript, which was reviewed by all co-authors.

Corresponding author

Correspondence to Loren D. Walensky.

Ethics declarations

Competing interests

L.D.W. is a scientific co-founder and shareholder in Aileron Therapeutics.

Additional information

Peer review information Katarzyna Marcinkiewicz and Anke Sparmann were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Purification of recombinant full-length BFL-1 constructs.

(ad) The indicated full-length, N-His6 BFL-1 constructs bearing a C-terminal chitin binding domain (CBD) were expressed in BL21 DE3 cells, purified by chitin affinity resin, subjected to overnight cleavage with hydroxylamine (100 mM), and further purified by SEC. Full-length BFL-1 constructs bearing C55 and C175 (a, c) were isolated as a doublet under non-reducing conditions and as a singlet under reducing conditions, as demonstrated by gel electrophoresis and Coomassie stain. The shaded peak on the FPLC profile indicates the fraction containing pure, full-length BFL-1 protein.

Extended Data Fig. 2 Hydrogen-deuterium exchange profiles of BFL-1ΔC C55 and BFL-1 C55/C175.

(a) Domain map of full-length BFL-1 highlighting the amino acid sequences that correspond to the individual α-helices, the truncation site for BFL-1ΔC C55, and the locations of C55 and C175 (colored in orange). (b-d) The deuterium uptake profiles of BFL-1ΔC C55 (b), BFL-1 C55/C175 without BME (c), and BFL-1 C55/C175 with BME (d) were measured at 10 seconds and 10 minutes of deuterium labeling. The relative deuterium uptake plots demonstrate significant time-dependent exchange in the region spanning the α1-α2 loop to the proximal portion of α4 helix (aa 18-66) and in the C-terminal region from the distal portion of α8 through the C-terminus (aa 144-175). The α5/α6 hydrophobic core of the protein showed relatively less deuterium exchange, and the N-terminal region containing α1 demonstrated little to no deuterium uptake. Data are representative of three independent experiments for BFL-1ΔC C55 and BFL-1 C55/C175 and two independent experiments for BME-reduced BFL-1 C55/C175 (see Supplementary Table 1). All HXMS data used to create this figure can be found in Supplementary Data File 2.

Extended Data Fig. 3 Cellular response to H2O2 treatment.

Cell viability of 293 T cells treated with the indicated concentrations of H2O2 and measured at 24 h. Data are mean ± s.d. of four technical replicates. The experiment was repeated twice using independent cell cultures and treatments with similar results. The sub-cytotoxic dose of 100 μM (asterisk) was chosen for pull-down experiments (Fig. 5d, e). Data for the cell viability plot is available online.

Source data

Supplementary information

Supplementary Information

Supplementary Table 1.

Reporting Summary

Supplementary Data 1

Alignment of BFL-1 amino acid sequences used for phylogenetic analysis.

Supplementary Data 2

HXMS data for analyses of BFL-1 proteins.

Supplementary Data 3

Data for DSF and FP plots and calculations.

Source data

Source Data Fig. 1

Uncropped anti-His6 western blot.

Source Data Fig. 4

Data for liposomal release assay plots.

Source Data Fig. 5

Uncropped anti-His6 and anti-GFP western blots.

Source Data Fig. 5

Data for mitochondrial cytochrome c release and cellular BH3-in-groove assay plots.

Source Data Extended Data Fig. 3

Data for cell viability plot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshavn, K.J., Wales, T.E., Bird, G.H. et al. A redox switch regulates the structure and function of anti-apoptotic BFL-1. Nat Struct Mol Biol 27, 781–789 (2020). https://doi.org/10.1038/s41594-020-0458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0458-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing