Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

On the cutting edge: protease-based methods for sensing and controlling cell biology

Abstract

Sequence-specific proteases have proven to be versatile building blocks for tools that report or control cellular function. Reporting methods link protease activity to biochemical signals, whereas control methods rely on engineering proteases to respond to exogenous inputs such as light or chemicals. In turn, proteases have inherent control abilities, as their native functions are to release, activate or destroy proteins by cleavage, with the irreversibility of proteolysis allowing sustained downstream effects. As a result, protease-based synthetic circuits have been created for diverse uses such as reporting cellular signaling, tuning protein expression, controlling viral replication and detecting cancer states. Here, we comprehensively review the development and application of protease-based methods for reporting and controlling cellular function in eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protease-based sensor designs.
Fig. 2: Protease-based signaling pathways.
Fig. 3: Protease-mediated drug control of proteins.
Fig. 4: Protease-mediated light control of proteins.

Similar content being viewed by others

References

  1. Klein, T., Eckhard, U., Dufour, A., Solis, N. & Overall, C. M. Proteolytic cleavage-mechanisms, function, and “omic” approaches for a near-ubiquitous posttranslational modification. Chem. Rev. 118, 1137–1168 (2018).

    PubMed  CAS  Google Scholar 

  2. Mevissen, T. E. T. & Komander, D. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86, 159–192 (2017).

    PubMed  CAS  Google Scholar 

  3. Müller, J. & Johnsson, N. Split-ubiquitin and the split-protein sensors: chessman for the endgame. ChemBioChem 9, 2029–2038 (2008).

    PubMed  Google Scholar 

  4. Groot, A. J. & Vooijs, M. A. The role of Adams in Notch signaling. Adv. Exp. Med. Biol. 727, 15–36 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Seegar, T. C. M. et al. Structural basis for regulated proteolysis by the α-secretase ADAM10. Cell 171, 1638–1648.e7 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Maskos, K. et al. Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proc. Natl. Acad. Sci. USA 95, 3408–3412 (1998).

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell 33, 729–736 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors. Cell 164, 780–791 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Seo, D. et al. A Mechanogenetic toolkit for interrogating cell signaling in space and time. Cell 165, 1507–1518 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Rodamilans, B., Shan, H., Pasin, F. & García, J. A. Plant viral proteases: beyond the role of peptide cutters. Front. Plant Sci. 9, 666 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Cesaratto, F., Burrone, O. R. & Petris, G. Tobacco Etch Virus protease: a shortcut across biotechnologies. J. Biotechnol. 231, 239–249 (2016).

    PubMed  CAS  Google Scholar 

  12. Kostallas, G., Löfdahl, P. Å. & Samuelson, P. Substrate profiling of tobacco etch virus protease using a novel fluorescence-assisted whole-cell assay. PLoS One 6, e16136 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Pauli, A. et al. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev. Cell 14, 239–251 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    PubMed  CAS  Google Scholar 

  15. Barnea, G. et al. The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci. USA 105, 64–69 (2008).

    PubMed  CAS  Google Scholar 

  16. Djannatian, M. S., Galinski, S., Fischer, T. M. & Rossner, M. J. Studying G protein-coupled receptor activation using split-tobacco etch virus assays. Anal. Biochem. 412, 141–152 (2011).

    PubMed  CAS  Google Scholar 

  17. Sanchez, M. I. & Ting, A. Y. Directed evolution improves the catalytic efficiency of TEV protease. Nat. Methods 17, 167–117 (2020).

    PubMed  CAS  Google Scholar 

  18. Fink, T. et al. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat. Chem. Biol. 15, 115–122 (2019).

    PubMed  CAS  Google Scholar 

  19. Shiryaev, S. A. et al. New details of HCV NS3/4A proteinase functionality revealed by a high-throughput cleavage assay. PLoS One 7, e35759 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Landro, J. A. et al. Mechanistic role of an NS4A peptide cofactor with the truncated NS3 protease of hepatitis C virus: elucidation of the NS4A stimulatory effect via kinetic analysis and inhibitor mapping. Biochemistry 36, 9340–9348 (1997).

    PubMed  CAS  Google Scholar 

  21. Tong, X. et al. Identification and analysis of fitness of resistance mutations against the HCV protease inhibitor SCH 503034. Antiviral Res. 70, 28–38 (2006).

    PubMed  CAS  Google Scholar 

  22. Pethe, M. A., Rubenstein, A. B. & Khare, S. D. Data-driven supervised learning of a viral protease specificity landscape from deep sequencing and molecular simulations. Proc. Natl. Acad. Sci. USA 116, 168–176 (2019).

    PubMed  CAS  Google Scholar 

  23. Chung, H. K. et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science 364, eaat6982 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Lin, M. Z., Glenn, J. S. & Tsien, R. Y. A drug-controllable tag for visualizing newly synthesized proteins in cells and whole animals. Proc. Natl. Acad. Sci. USA 105, 7744–7749 (2008).

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Schoggins, J. W. & Rice, C. M. Innate immune responses to hepatitis C virus. Curr. Top. Microbiol. Immunol. 369, 219–242 (2013).

    PubMed  CAS  Google Scholar 

  26. Horner, S. M., Park, H. S. & Gale, M. Jr. Control of innate immune signaling and membrane targeting by the Hepatitis C virus NS3/4A protease are governed by the NS3 helix α0. J. Virol. 86, 3112–3120 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhou, X. X., Chung, H. K., Lam, A. J. & Lin, M. Z. Optical control of protein activity by fluorescent protein domains. Science 338, 810–814 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Butko, M. T. et al. Fluorescent and photo-oxidizing TimeSTAMP tags track protein fates in light and electron microscopy. Nat. Neurosci. 15, 1742–1751 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Chung, H. K. et al. Tunable and reversible drug control of protein production via a self-excising degron. Nat. Chem. Biol. 11, 713–720 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  30. McCauley, J. A. & Rudd, M. T. Hepatitis C virus NS3/4a protease inhibitors. Curr. Opin. Pharmacol. 30, 84–92 (2016).

    PubMed  CAS  Google Scholar 

  31. Shiryaev, S. A. et al. Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Res. 143, 218–229 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Lei, J. et al. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science 353, 503–505 (2016).

    PubMed  CAS  Google Scholar 

  33. Blanco, R., Carrasco, L. & Ventoso, I. Cell killing by HIV-1 protease. J. Biol. Chem. 278, 1086–1093 (2003).

    PubMed  CAS  Google Scholar 

  34. Chaudhury, S. & Gray, J. J. Identification of structural mechanisms of HIV-1 protease specificity using computational peptide docking: implications for drug resistance. Structure 17, 1636–1648 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Iyer, K. et al. Utilizing the split-ubiquitin membrane yeast two-hybrid system to identify protein-protein interactions of integral membrane proteins. Sci. STKE 2005, pl3 (2005).

    PubMed  Google Scholar 

  36. Johnsson, N. & Varshavsky, A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA 91, 10340–10344 (1994).

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Petschnigg, J. et al. The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein interactions in human cells. Nat. Methods 11, 585–592 (2014).

    PubMed  CAS  Google Scholar 

  38. Wehr, M. C. et al. Monitoring regulated protein-protein interactions using split TEV. Nat. Methods 3, 985–993 (2006).

    PubMed  CAS  Google Scholar 

  39. Wehr, M. C. & Rossner, M. J. Split protein biosensor assays in molecular pharmacological studies. Drug Discov. Today 21, 415–429 (2016).

    PubMed  CAS  Google Scholar 

  40. Wehr, M. C., Reinecke, L., Botvinnik, A. & Rossner, M. J. Analysis of transient phosphorylation-dependent protein-protein interactions in living mammalian cells using split-TEV. BMC Biotechnol. 8, 55 (2008).

    PubMed  PubMed Central  Google Scholar 

  41. Kapust, R. B. et al. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng. 14, 993–1000 (2001).

    PubMed  CAS  Google Scholar 

  42. Gray, D. C., Mahrus, S. & Wells, J. A. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell 142, 637–646 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Baeumler, T. A., Ahmed, A. A. & Fulga, T. A. Engineering synthetic signaling pathways with programmable dCas9-based chimeric receptors. Cell Reports 20, 2639–2653 (2017).

    PubMed  CAS  Google Scholar 

  44. Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Inagaki, H. K. et al. Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148, 583–595 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Jagadish, S., Barnea, G., Clandinin, T. R. & Axel, R. Identifying functional connections of the inner photoreceptors in Drosophila using Tango-Trace. Neuron 83, 630–644 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Talay, M. et al. Transsynaptic mapping of second-order taste neurons in flies by trans-Tango. Neuron 96, 783–795.e4 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Kipniss, N. H. et al. Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system. Nat. Commun. 8, 2212 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Schwarz, K. A., Daringer, N. M., Dolberg, T. B. & Leonard, J. N. Rewiring human cellular input-output using modular extracellular sensors. Nat. Chem. Biol. 13, 202–209 (2017).

    PubMed  CAS  Google Scholar 

  50. Lee, D. et al. Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain. Nat. Methods 14, 495–503 (2017).

    PubMed  CAS  Google Scholar 

  51. Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9, 379–384 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Wang, W. et al. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. Nat. Biotechnol. 35, 864–871 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Kim, M. W. et al. Time-gated detection of protein-protein interactions with transcriptional readout. eLife 6, e30233 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Siciliano, V. et al. Engineering modular intracellular protein sensor-actuator devices. Nat. Commun. 9, 1881 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. Cella, F., Wroblewska, L., Weiss, R. & Siciliano, V. Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells. Nat. Commun. 9, 4392 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Roybal, K. T. et al. Engineering T cells with customized therapeutic response programs using synthetic Notch receptors. Cell 167, 419–432.e16 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in living cells. Science 361, 1252–1258 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Taxis, C., Stier, G., Spadaccini, R. & Knop, M. Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol. Syst. Biol. 5, 267 (2009).

    PubMed  PubMed Central  Google Scholar 

  59. Hanson, B. J. et al. A homogeneous fluorescent live-cell assay for measuring 7-transmembrane receptor activity and agonist functional selectivity through beta-arrestin recruitment. J. Biomol. Screen. 14, 798–810 (2009).

    PubMed  CAS  Google Scholar 

  60. Dolberg, T.B. et al. Computation-guided optimization of split protein systems. Preprint at https://www.biorxiv.org/content/10.1101/863530v2 (2019).

  61. Pratt, M. R., Schwartz, E. C. & Muir, T. W. Small-molecule-mediated rescue of protein function by an inducible proteolytic shunt. Proc. Natl. Acad. Sci. USA 104, 11209–11214 (2007).

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Morgan, C. W., Diaz, J. E., Zeitlin, S. G., Gray, D. C. & Wells, J. A. Engineered cellular gene-replacement platform for selective and inducible proteolytic profiling. Proc. Natl. Acad. Sci. USA 112, 8344–8349 (2015).

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Yang, Y. et al. Kinase pathway inhibition restores PSD95 induction in neurons lacking fragile X mental retardation protein. Proc. Natl. Acad. Sci. USA 116, 12007–12012 (2019).

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Ahlén, G., Holmström, F., Gibbs, A., Alheim, M. & Frelin, L. Long-term functional duration of immune responses to HCV NS3/4A induced by DNA vaccination. Gene Ther. 21, 739–750 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Chen, M. et al. Human and murine antibody recognition is focused on the ATPase/helicase, but not the protease domain of the hepatitis C virus nonstructural 3 protein. Hepatology 28, 219–224 (1998).

    PubMed  Google Scholar 

  66. Gerlach, J. T. et al. Minimal T-cell-stimulatory sequences and spectrum of HLA restriction of immunodominant CD4+ T-cell epitopes within hepatitis C virus NS3 and NS4 proteins. J. Virol. 79, 12425–12433 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Fay, E. J. et al. Engineered small-molecule control of influenza A virus replication. J. Virol. 93, e01677–18 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. Zhu, W. et al. Precisely controlling endogenous protein dosage in hPSCs and derivatives to model FOXG1 syndrome. Nat. Commun. 10, 928 (2019).

    PubMed  PubMed Central  Google Scholar 

  69. Jacobs, C. L., Badiee, R. K. & Lin, M. Z. StaPLs: versatile genetically encoded modules for engineering drug-inducible proteins. Nat. Methods 15, 523–526 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Tague, E. P., Dotson, H. L., Tunney, S. N., Sloas, D. C. & Ngo, J. T. Chemogenetic control of gene expression and cell signaling with antiviral drugs. Nat. Methods 15, 519–522 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Dickinson, B. C., Packer, M. S., Badran, A. H. & Liu, D. R. A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nat. Commun. 5, 5352 (2014).

    PubMed  CAS  Google Scholar 

  72. Shrestha, P. et al. Cell-type-specific drug-inducible protein synthesis inhibition demonstrates that memory consolidation requires rapid neuronal translation. Nat. Neurosci. 23, 281–292 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Mondal, P. et al. Repurposing protein degradation for optogenetic modulation of protein activities. ACS Synth. Biol. 8, 2585–2592 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Zhang, W. et al. Optogenetic control with a photocleavable protein, PhoCl. Nat. Methods 14, 391–394 (2017).

    PubMed  Google Scholar 

  75. Agrawal, D. K. et al. Mathematical models of protease-based enzymatic biosensors. ACS Synth Biol. 9, 198–208 (2020).

    PubMed  CAS  Google Scholar 

  76. Jiang, Y. et al. Discovery of danoprevir (ITMN-191/R7227), a highly selective and potent inhibitor of hepatitis C virus (HCV) NS3/4A protease. J. Med. Chem. 57, 1753–1769 (2014).

    PubMed  CAS  Google Scholar 

  77. Lamarre, D. et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 426, 186–189 (2003).

    PubMed  CAS  Google Scholar 

  78. McPhee, F. et al. Preclinical profile and characterization of the hepatitis C virus NS3 protease inhibitor asunaprevir (BMS-650032). Antimicrob. Agents Chemother. 56, 5387–5396 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Binford, S. L. et al. Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhinovirus 3C protease inhibitor. Antimicrob. Agents Chemother. 49, 619–626 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Gibson, T. J., Seiler, M. & Veitia, R. A. The transience of transient overexpression. Nat. Methods 10, 715–721 (2013).

    PubMed  CAS  Google Scholar 

  81. Ryu, S. M., Hur, J. W. & Kim, K. Evolution of CRISPR towards accurate and efficient mammal genome engineering. BMB Rep. 52, 475–481 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Lin lab, M. Westberg and Y.S. Kim (all at Stanford University) for helpful discussions. This work was supported by a Stanford Discovery Innovation Award and NIH grant 1R21GM132687 to M.Z.L. H.K.C. is a Damon Runyon Fellow supported by Damon Runyon Cancer Research Foundation grant DRG-[2374-19].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Z. Lin.

Ethics declarations

Competing interests

H.K.C. is an inventor on patents describing SMASh and RASER. M.Z.L. is an inventor on patents describing SMASh, StaPL and RASER.

Additional information

Editor recognition statement Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

One sentence only If you are citing a reference for the first time in these legends, please include all new references in the main text Methods References section, and carry on the numbering from the main References section of the paper. If your paper does not have a Methods section, include all new references at the end of the main Reference list.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, H.K., Lin, M.Z. On the cutting edge: protease-based methods for sensing and controlling cell biology. Nat Methods 17, 885–896 (2020). https://doi.org/10.1038/s41592-020-0891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-020-0891-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing