Skip to main content
Log in

The Effect of TSC and Nickel Doping on SnS Thin Films

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Tin sulfide (SnS) thin films were obtained by chemical bath deposition (CBD) using different concentrations of trisodium citrate (TSC) as a complexing agent. Nickel doping tin sulfide was carried out. The structural, electrical, chemical composition and optical properties of thin films were analyzed. The lowest resistivity (ρ = 0.42 × 105Ω cm) is observed for Ni:SnS (6 at. %) The energy band gap values with the TSC addition are found in the range 1.36 eV–1.57 eV. The results demonstrated that tin sulfide (SnS) thin films have the potential to be used for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sebastian S, Kulandaisamy I, Valanarasu S, Yahia I, Kim H, Vikraman D (2020) J. Sol-Gel. Sci Technol 93:52

    CAS  Google Scholar 

  2. Prasanna K, Maiyalagan T, Thaiyan M, Kim H (2019). Appl Surf Sci 479:167

    Google Scholar 

  3. Delice S, Isik M, Gullu HH, Terlemezoglu M, Surucu OB, Parlak M, Gasanly NM (2019). J Phys Chem Solids 131:22

    CAS  Google Scholar 

  4. Kafashan H (2019) Optoelectronic properties of In-doped SnS thin films. Ceram Int 45(1):334–345

    CAS  Google Scholar 

  5. Wassel A, El Radaf I (2020). Appl Phys A-mater 126:177

    CAS  Google Scholar 

  6. El Radaf I (2018). Mater Res Express 5:015904

    Google Scholar 

  7. Stroyuk O, Raevskaya A, Gaponik N (2018). Chem Soc Rev 47:5354

    CAS  PubMed  Google Scholar 

  8. Mohan Kumar G, Fu X, Ilanchezhiyan P, Yuldashev SU, Jin Lee D, Dong Cho H, Won Kang T (2017) Highly Sensitive Flexible Photodetectors Based on Self-Assembled Tin Monosulfide Nanoflakes with Graphene Electrodes. ACS Appl Mater Interfaces 9(37):32142–32150

    CAS  PubMed  Google Scholar 

  9. Kergommeaux A, Lopez-Harod M, Pougetd S, Zuof J, Lebrung C, Chandezon F, Aldakov D, Reiss P (2015) Synthesis, Internal Structure, and Formation Mechanism of Monodisperse Tin Sulfide Nanoplatelets. J Am Chem Soc 137(31):9943–9952

    PubMed  Google Scholar 

  10. Jain P, Arun P (2013) Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films 548:241–246

    CAS  Google Scholar 

  11. Nwofe PA, Reddy KTR, Sreedevi G, Tan JK, Miles RW (2012). Jpn J Appl Phys 51:10NC36

    Google Scholar 

  12. Cheng S, He Y, Chen G (2008) Structure and properties of SnS films prepared by electro-deposition in presence of EDTA. Mater Chem Phys 110:449–453

    CAS  Google Scholar 

  13. Kafashan H, Balak Z (2017). Spectrochim Acta A Mol Biomol Spectrosc 184:151

    CAS  PubMed  Google Scholar 

  14. Price L, Parkin I, Hardy A, Clark R (1999) Atmospheric Pressure Chemical Vapor Deposition of Tin Sulfides (SnS, Sn2S3, and SnS2) on Glass. Chem Mater 11:1792–1799

    CAS  Google Scholar 

  15. Yue G, Lin Y, Wen X, Wang L, Chen Y, Peng D (2012). Appl Phys A Mater Sci Process 106:–87

  16. Nair PK, Garcia-Angelmo AR, Nair MTS (2016) Cubic and orthorhombic SnS thin-film absorbers for tin sulfide solar cells. Phys Status Solidi A 213(1):170–177

    CAS  Google Scholar 

  17. Akkari A, Regima M, Guasch C, Kamoun-Turki N (2011) Effect of Deposition Time on Physical Properties of Nanocrystallized SnS Zinc Blend Thin Films Grown by Chemical Bath Deposition. Adv Mater Res 324:101–104

    CAS  Google Scholar 

  18. Gedi S, Reddy V, Park C, Chan-Wook J, Ramakrishna Reddy KT (2015). Opt Mater 42:468

    CAS  Google Scholar 

  19. Wang M, Yue G, Lin Y, Wen X, Peng D, Geng Z (2013) Synthesis, Optical Properties and Photovoltaic Application of the SnS Quasi-one-dimensional Nanostructures. Nano-Micro Lett 5:1–6

    Google Scholar 

  20. Jayasree Y, Chalapathi U, Raja VS (2013) Growth and characterization of tin sulphide thin films by chemical bath deposition using ethylene diamine tetra-acetic acid as the complexing agent. Thin Solid Films 537:149–155

    CAS  Google Scholar 

  21. Seal M, Singh N, McFarland EW, Baltrusaitis J (2015). J Phys Chem C 119:6471

    CAS  Google Scholar 

  22. Turan E, Kul M, Aybek AS, Zor M (2009). J Phys D Appl Phys 42:245408

    Google Scholar 

  23. Chalapathi U, Poornaprakash B, Park S-H (2016). J Alloys Compd 689:938

    CAS  Google Scholar 

  24. Chaki S, Chaudhary M, Deshpande M (2016). J Semicond 37:053001

    Google Scholar 

  25. Guneri E, Ulutas C, Kirmizigul F, Altindemir G, Gode F, Gumus C (2010). Appl Surf Sci 257:1189

    CAS  Google Scholar 

  26. Chalapathi U, Poornaprakash B, Park S (2016). Sol Energy 139:238

    CAS  Google Scholar 

  27. Gode F, Guneri E, Baglayan O (2014). Appl Surf Sci 318:227

    CAS  Google Scholar 

  28. Kafashan H (2018). Mater Res Express 5:046417

    Google Scholar 

  29. Reghima M, Akkari A, Guasch C, Turki-Kamoun N (2015). J Renew Sustain Ener 7:023128

    Google Scholar 

  30. Patel M, Mukhopadhyay I, Ray A (2013) Annealing influence over structural and optical properties of sprayed SnS thin films. Opt Mater 35:1693–1699

    CAS  Google Scholar 

  31. Kamli K, Hadef Z, Chouial B, Zaidi B, Hadjoudja B, Chibani A (2017) Synthesis and characterisation of tin sulphide thin films. Surf Eng 33(8):567–572

    CAS  Google Scholar 

  32. Wang H, Dong S, Chang Y, Zhou X, Hu X (2012). Appl Surf Sci 258:4288

    CAS  Google Scholar 

  33. Chen Y, Huang G, Huang W, Wang L, Tian Y, Ma Z, Yang Z (2012) Annealing effects on photocatalytic activity of ZnS films prepared by chemical bath deposition. Mater Lett 75:221–224

    CAS  Google Scholar 

  34. Muruganandam S, Anbalagan G, Murugadoss G (2014) Synthesis and structural, optical and thermal properties of CdS:Zn2+ nanoparticles. Appl Nanosci 4:1013–1019

    CAS  Google Scholar 

  35. Akkari A, Guasch C, Kamoun-Turki N (2010). J Alloys Compd 490:180

    CAS  Google Scholar 

  36. Cao M, Yao K, Chen Z, Guan Y, Zhang X, Huang J, Sun Y, Lai J, Chen M, Wang L, Shen Y, Dai N (2020) Enhanced photoelectrochemical water splitting with template-free electrodeposition of SnS nanorods photoelectrode. J Alloys Compd 830:154729

    CAS  Google Scholar 

  37. Uday Bhaskar P, Suresh Babu G, Kishore Kumar YB, Jayasree Y, Sundara Raja V (2012) Effect of bath concentration, temperature on the growth and properties of chemical bath deposited ZnS films. Mater Chem Phys 134:1106–1112

    CAS  Google Scholar 

  38. Gao C, Shen H, Sun L (2011). Appl Surf Sci 257:6750

    CAS  Google Scholar 

  39. Ubale AU (2010) Effect of complexing agent on growth process and properties of nanostructured Bi2S3 thin films deposited by chemical bath deposition method. Mater Chem Phys 121:555–560

    CAS  Google Scholar 

  40. Sall T, Soucase B, Mollar M, Sans J (2017) SnS Thin Films Prepared by Chemical Spray Pyrolysis at Different Substrate Temperatures for Photovoltaic Applications. J Elec Materi 46:1714–1719

    CAS  Google Scholar 

  41. Touati B, Gassoumi A, Guasch C, Turki-Kamoun N (2017). Mater Sci Semicond Process 67:20

    CAS  Google Scholar 

  42. Seboui Z, Gassoumi A, Cuminal Y, Turki-Kamoun N (2015). J Renew and Sustainable Energy 7(1):011203

    Google Scholar 

  43. Ammar I, Gassoumi A, Akkari A, Delpech F, Ammar S, Turki-Kamoun N (2019). Eur Physical J Plus 134(10):505

    CAS  Google Scholar 

  44. Manohari A, Dhanapandian S, Manoharan C, Kumar K, Mahalingam T (2014) Effect of doping concentration on the properties of bismuth doped tin sulfide thin films prepared by spray pyrolysis. Mater Sci Semicond Process 17:138–142

    CAS  Google Scholar 

  45. M. Vasudeva Reddy, G. Sreedevi, C. Park, R.W. Miles, K.T. Ramakrishna Reddy (2015) Curr Appl Phys 15: 588

  46. Rath T, Gury L, Sanchez-Molina I, Martinez L, Haque SA (2015) Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells. Chem Commun 51:10198–10201

    CAS  Google Scholar 

  47. Tauc J, Abeles F (eds) (1970) Optical Properties of Solids. IOP Publishing Ltd., North Holland, p 903

    Google Scholar 

  48. Ikhmayiesa SJ, Ahmad-Bitarb RN (2013). J Mater Res Technol 2:221

    Google Scholar 

  49. Jrad A, Naffouti W, Nasr TB, Turki-Kamoun N (2016). J Lumin 173:135

    CAS  Google Scholar 

  50. Gnanamuthu S, Punithavathy I, Jeyakumar S, Usharani K, Balu AR (2016). Mater Res Innov 20(5):395

    CAS  Google Scholar 

  51. Maeda M, Watanabe T (2007). Surf Coat 201:9309

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz Gassoumi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, I., Gassoumi, A. & Turki-Kamoun, N. The Effect of TSC and Nickel Doping on SnS Thin Films. Silicon 13, 1933–1938 (2021). https://doi.org/10.1007/s12633-020-00589-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00589-w

Keywords

Navigation