Skip to main content
Log in

Categorical Bernstein operators and the Boson-Fermion correspondence

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove a conjecture of Cautis and Sussan providing a categorification of the Boson-Fermion correspondence as formulated by Frenkel and Kac. We lift the Bernstein operators to infinite chain complexes in Khovanov’s Heisenberg category \({\mathcal {H}}\) and from them construct categorical analogues of the Kac-Frenkel fermionic vertex operators. These fermionic functors are then shown to satisfy categorical Clifford algebra relations, solving a conjecture of Cautis and Sussan. We also prove another conjecture of Cautis and Sussan demonstrating that the categorical Fock space representation of \({\mathcal {H}}\) is a direct summand of the regular representation by showing that certain infinite chain complexes are categorical Fock space idempotents. In the process, we enhance the graphical calculus of \({\mathcal {H}}\) by lifting various Littlewood-Richardson branching isomorphisms to the Karoubian envelope of \({\mathcal {H}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In his original paper, Khovanov only proved injectivity \(\mathfrak {h} \hookrightarrow K_0({\mathcal {H}})\) and conjectured surjectivity. The full bijection was not proved until much later in a recent paper by Brundan, Savage and Webster [1].

  2. The complexes \(\mathsf {B}_a, \;\mathsf {B}_a^*\) are equivalent to the complexes \(\mathsf {C}_a, \mathsf {C}_a^*\) originally defined by Cautis and Sussan via the involution \(a\mapsto -a\) and a homological grading shift of [a].

  3. For completeness, we mention that its unique irreducible module \(F_U\), i.e its spin module, is given by the maximal isotropic subspace \(U=\bigoplus _{i \le 0} \mathbb {k} \psi _i + \bigoplus _{i>0} \mathbb {k}\psi _i^*\) with the property that \(U(\overline{0})=0\). This fact will not be used here.

  4. Macdonald uses the notation \(B^\perp _a\) instead of \(B^*_a\).

References

  1. Brundan, J., Savage, A., Webster, B.: The degenerate Heisenberg category and its Grothendieck ring. (2019) arXiv:1812.03255

  2. Cautis, S., Licata, A.: Vertex operators and 2-representations of quantum affine algebras (2011). arXiv:1112.6189

  3. Cautis, S., Licata, A.: Heisenberg categorification and Hilbert schemes. Duke Math. J. 161(13), 2469–2547 (2012)

    Article  MathSciNet  Google Scholar 

  4. Cautis, S., Licata, A.: Loop realizations of quantum affine algebras. J. Math. Phys. 53(12), 123505, 18 (2012)

    Article  MathSciNet  Google Scholar 

  5. Cautis, S., Licata, A., Sussan, J.: Braid group actions via categorified Heisenberg complexes. Compos. Math. 150(1), 105–142 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cautis, S., Sussan, J.: On a categorical Boson-Fermion correspondence. Commun. Math. Phys. 336(2), 649–669 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cvitanovic, P.: Group Theory: Birdtracks, Lie’s and Exceptional Groups. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  8. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations: Iv. a new hierarchy of soliton equations of kp-type. Physica D Nonlinear Phenom. 4(3), 343–365 (1982)

    Article  MathSciNet  Google Scholar 

  9. Elias, B., Hogancamp, M.: Categorical diagonalization (2017). arXiv:1707.04349

  10. Frenkel, I.B., Jing, N., Wang, W.: Vertex representations via finite groups and the McKay correspondence. Int. Math. Res. Not. 195–222, 2000 (2000)

    MATH  Google Scholar 

  11. Frenkel, I.B., Kac, V.G.: Basic representations of affine Lie algebras and dual resonance models. Invent. Math. 62, 23–66 (1980)

    Article  MathSciNet  Google Scholar 

  12. Frenkel, I., Penkov, I., Serganova, V.: A categorification of the boson-fermion correspondence via representation theory of \(sl(\infty )\). Commun. Math. Phys. 341(3), 911–931 (2016)

    Article  MathSciNet  Google Scholar 

  13. Frenkel, I.B.: Two constructions of affine lie algebra representations and boson-fermion correspondence in quantum field theory. J. Funct. Anal. 44(3), 259–327 (1981)

    Article  MathSciNet  Google Scholar 

  14. Fulton, W.: Young Tableaux: With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  15. Gaberdiel, M.R.: An introduction to conformal field theory. Rep. Progress Phys. 63, 10 (2000)

    Article  Google Scholar 

  16. Gaberdiel, M.R.: 2D conformal field theory and vertex operator algebras (2005). arXiv:hep-th/0509027

  17. Garcia, A.: Young seminormal representation, Murphy elements, and content evaluations. http://www.math.ucsd.edu/~garsia/somepapers/Youngseminormal.pdf, (2003)

  18. Geissinger, L.: Hopf algebras of symmetric functions and class functions. Combinatoire at représentation du groupe symétrique 579, 168–181 (1976)

    Article  MathSciNet  Google Scholar 

  19. Hogancamp, M.: Idempotents in triangulated monoidal categories (2017). arXiv:1703.01001

  20. Hill, D., Sussan, J.: A categorification of twisted Heisenberg algebras. Adv. Math. 295, 368–420 (2016)

    Article  MathSciNet  Google Scholar 

  21. Jing, N.: Vertex operators and Hall-Littlewood symmetric functions. Adv. Math. 87(2), 226–248 (1991)

    Article  MathSciNet  Google Scholar 

  22. Jing, N.: Vertex operators, symmetric functions, and the spin group \(\gamma _n\). J. Algebra 138(2), 340–398 (1991)

    Article  MathSciNet  Google Scholar 

  23. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  24. Kac, V.: Vertex algebras for beginners, volume 10 of University Lecture series. American Mathematical Society, 2nd edition (1998)

  25. Khovanov, M.: Heisenberg algebra Lauda, A.: unpublished notes. (2009)

  26. Licata, A., Savage, A.: A survey of Heisenberg categorification via graphical calculus. Bull. Inst. Math. Acad. Sin. (N.S.) 7(2), 291–321 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, 2nd edition, (1995)

  28. Miwa, T., Jimbo, M., Date, E.: Solitions, volume 135 of Cambridge Tracts in Mathematics. Cambridge University Press (2000)

  29. Raicu, C.: Products of Young symmetrizers and ideals in the generic tensor algebra. J. Algebraic Comb. 39(2), 247–270 (2014)

    Article  MathSciNet  Google Scholar 

  30. Rosso, D., Savage, A.: A general approach to Heisenberg categorification via wreath product algebras. Math. Z. 286(1–2), 603–655 (2017)

    Article  MathSciNet  Google Scholar 

  31. Zertuche, R.R.: An introduction to the half-infinite wedge. Contemp. Math. 657, 198–237 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Savage, A.: A geometric boson-fermion correspondence (2007). arXiv:math/0508438

  33. Segal, G.: Unitary representations of some infinite dimensional groups. Commun. Math. Phys. 80, 301–342 (1981)

    Article  MathSciNet  Google Scholar 

  34. Stern, E.: Semi-infinite wedges and vertex operators. Int. Math. Res. Not. 5, 201–220 (1995)

    Article  MathSciNet  Google Scholar 

  35. Tian, Y.: Towards a categorical boson-fermion correspondence (2017). arXiv:1710.11579

  36. Tingley, P.: Notes on Fock space. http://webpages.math.luc.edu/~ptingley/, (2011)

  37. Kroode, F., Leur, J.: Bosonic and fermionic realizations of the affine algebra \(\widehat{{\rm gl}}_n\). Commun. Math. Phys. 137, 67–107 (1991)

    Article  MathSciNet  Google Scholar 

  38. Yanagida, S.: Boson-fermion correspondence from factorization spaces. J. Geom. Phys. 124, 55–63 (2018)

    Article  MathSciNet  Google Scholar 

  39. Zelevinsky, A.V.: Representations of Finite Classical Groups, volume 869 of Lecture Notes in Mathematics. Springer (1981)

Download references

Acknowledgements

I am deeply grateful to Matt Hogancamp for innumerable conversations and Aaron Lauda for suggesting this project and his encouragement and support throughout. Sincere thanks also go to Tony Licata and Josh Sussan for beneficial discussions and Mikhail Khovanov, Alistair Savage, and Geordie Williamson for detailed suggestions on earlier versions of this work. I would also like to thank Yin Tian for pointing out an extra relation in a theorem as well as the anonymous referees for excellent suggestions and comments. The author was partially supported by NSF grants DMS-1255334 and DMS-1664240.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolle S. González.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Examples

Appendix A: Examples

1.1 A.1.

Let \(a=2\) and \(b=3\). By Theorem 6.6 we know that \(\mathsf {B}_1 \otimes \mathsf {B}_3 \simeq \mathsf {B}_2 \otimes \mathsf {B}_2 [1]\). We show explicitly how such an equivalence could be true. In particular, \(\mathsf {B}_2 \otimes \mathsf {B}_2\) is given by total complex of the bi-complex,

figure g

Applying Proposition 4.6 followed by Proposition 4.8 we obtain an isomorphism with the bi-complex,

figure h

Applying Lemma 3.7 along the isomorphisms denoted in red, we see that

$$\begin{aligned} \mathsf {B}_2 \otimes \mathsf {B}_2 \simeq \cdots \rightarrow \mathsf {P}^{(3,2)}\mathsf {Q}[1] \rightarrow \mathsf {P}^{(2,2)}[0]. \end{aligned}$$

Likewise, \(\mathsf {B}_1 \otimes \mathsf {B}_3\) is given by the total complex of the bi-complex,

figure i

which after applications of Propositions 4.6 and 4.8 becomes,

figure j

Once again, cancelling summands along the isomorphisms in red and blue, by Lemma 3.7 we have

$$\begin{aligned} \mathsf {B}_1 \otimes \mathsf {B}_3 \simeq \cdots \rightarrow \mathsf {P}^{(3,2)}\mathsf {Q}[2] \rightarrow \mathsf {P}^{(2,2)}[1]. \end{aligned}$$

Continuing in this manner along all homological degrees it becomes apparent how one obtains the homotopy equivalence \(\mathsf {B}_1 \otimes \mathsf {B}_3 \simeq \mathsf {B}_2 \otimes \mathsf {B}_2[1]\).

1.2 A.2

Now suppose \(a=b=2\) and consider \(\mathsf {B}_1 \otimes \mathsf {B}_2\). By Theorem 6.6 this product should be nullhomotopic. To see why, consider the following bi-complex,

figure k

Once again, by Propositions 4.6 and 4.8 there an isomorphism with the bi-complex below, with isomorphisms along the red and blue arrows.

figure l

After applying Lemma 3.7 along the red and blue isomorphisms, all chain groups in homological degrees zero and one can be canceled. Continuing in this manner one can eliminate the summands in all degrees, thus obtaining the desired nullhomotopy.

1.3 A.3

Lastly, let \(a=1\) and \(b=2\) and suppose \(\mathsf {Q}^{\otimes 4} =0\). By Theorem 6.14 we know that \(\mathsf {B}_1 \otimes \mathsf {B}_2^* \simeq \mathsf {B}_1^*\otimes \mathsf {B}_0\). In particular, we have that \(\mathsf {B}_1 \otimes \mathsf {B}_2^*\) is given by the total complex of the bi-complex below,

figure m

Thus, after applying Lemma 3.7 along the isomorphism in red, we see that

$$\begin{aligned} \mathsf {B}_1 \otimes \mathsf {B}_2^* \simeq \mathsf {P}^{(2)}\mathsf {Q}^{(2,1)} [1] \rightarrow \mathsf {P}\mathsf {Q}^{(2)}[0] \rightarrow \mathsf {P}\mathsf {P}\mathsf {Q}^{(3)}[-1]. \end{aligned}$$

Now, if we consider \(\mathsf {B}_1^* \otimes \mathsf {B}_0\) we see it is the total complex of the bi-complex

figure n

which after applying Propositions 4.6 and 4.7 is homotopic to,

figure o

But \(\mathsf {Q}^{(2,1)}=\mathsf {Q}^{(2,1)^t}\), thus after Gaussian elimination along the isomorphisms in red we obtain

$$\begin{aligned} \mathsf {B}_1^*\otimes \mathsf {B}_0 \simeq \mathsf {P}^{(2)}\mathsf {Q}^{(2,1)^t} [2] \rightarrow \mathsf {P}\mathsf {Q}^{(2)}[1] \rightarrow \mathsf {P}\mathsf {P}\mathsf {Q}^{(3)}[0] \simeq \mathsf {B}_1\otimes \mathsf {B}_2^*[1]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, N.S. Categorical Bernstein operators and the Boson-Fermion correspondence. Sel. Math. New Ser. 26, 51 (2020). https://doi.org/10.1007/s00029-020-00558-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-00558-6

Mathematics Subject Classification

Navigation