Skip to main content
Log in

Regulating surface state of WO3 nanosheets by gamma irradiation for suppressing hydrogen evolution reaction in electrochemical N2 fixation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Realizing the reduction of N2 to NH3 at low temperature and pressure is always the unremitting pursuit of scientists and then electrochemical nitrogen reduction reaction offers an intriguing alternative. Here, we develop a feasible way, gamma irradiation, for constructing defective structure on the surface of WO3 nanosheets, which is clearly observed at the atomic scale by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The abundant oxygen vacancies ensure WO3 nanosheets with a Faradaic efficiency of 23% at −0.3 V vs. RHE. Moreover, we start from the regulation of the surface state to suppress proton availability towards hydrogen evolution reaction (HER) on the active site and thus boost the selectivity of nitrogen reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Service, R. F. Liquid sunshine. Science2018, 361, 120–123.

    CAS  Google Scholar 

  2. Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed.2019, 58, 2321–2325.

    CAS  Google Scholar 

  3. Xia, L.; Yang, J. J.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Fang, W. H.; Asiri, A. M.; Xie, F. Y.; Cui, G. L.; Sun, X. P. Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation. Chem. Commun.2019, 55, 3371–3374.

    CAS  Google Scholar 

  4. Xue, X. L.; Chen, R. P.; Yan, C. Z.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Ma, L. B.; Zhu, G. Y.; Jin, Z. Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale2019, 11, 10439–10445.

    CAS  Google Scholar 

  5. Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res.2020, 13, 209–214.

    CAS  Google Scholar 

  6. Yu, H. J.; Wang, Z. Q.; Yin, S. L.; Li, C. J.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Mesoporous Au3Pd film on Ni foam: A self-supported electrocatalyst for efficient synthesis of ammonia. ACS Appl. Mater. Interfaces2020, 12, 436–442.

    CAS  Google Scholar 

  7. Wu, T. W.; Kong, W. H.; Zhang, Y.; Xing, Z.; Zhao, J. X.; Wang, T.; Shi, X. F.; Luo, Y. L.; Sun, X. P. Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping. Small Methods2019, 3, 1900356.

    CAS  Google Scholar 

  8. Liu, Y. T.; Li, D.; Yu, J. Y.; Ding, B. Stable confinement of black phosphorus quantum dots on black tin oxide nanotubes: A robust, double-active electrocatalyst toward efficient nitrogen fixation. Angew. Chem., Int. Ed.2019, 58, 16439–16444.

    CAS  Google Scholar 

  9. Lü, F.; Zhao, S. Z.; Guo, R. J.; He, J.; Peng, X. Y.; Bao, H. H.; Fu, J. T.; Han, L. L.; Qi, G. C.; Luo, J. et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy2019, 61, 420–427.

    Google Scholar 

  10. Li, L. Q.; Tang, C.; Xia, B. Q.; Jin, H. Y.; Zheng, Y.; Qiao, S. Z. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal.2019, 9, 2902–2908.

    CAS  Google Scholar 

  11. Wang, Y.; Chen, A. R.; Lai, S. H.; Peng, X. Y.; Zhao, S. Z.; Hu, G. Z.; Qiu, Y.; Ren, J. Q.; Liu, X. J.; Luo, J. Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions. J. Catal.2020, 381, 78–83.

    CAS  Google Scholar 

  12. Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, S.; Zhang, T. R. Defect engineering in photocatalytic nitrogen fixation. ACS Catal.2019, 11, 9739–9750.

    Google Scholar 

  13. Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater.2019, 31, 1902709.

    Google Scholar 

  14. Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater.2018, 30, 1803694.

    Google Scholar 

  15. Cheng, H.; Cui, P. X.; Wang, F. R.; Ding, L. X.; Wang, H. H. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angew. Chem., Int. Ed.2019, 58, 15541–15547.

    CAS  Google Scholar 

  16. Hu, L.; Xing, Z.; Feng, X. F. Understanding the electrocatalytic interface for ambient ammonia synthesis. ACS Energy Lett.2020, 5, 430–436.

    CAS  Google Scholar 

  17. Zhang, R.; Ren, X.; Shi, X. F.; Xie, F. Y.; Zheng, B. Z.; Guo, X. D.; Sun, X. P. Enabling effective electrocatalytic N2 conversion to NH3 by the TiO2 nanosheets array under ambient conditions. ACS Appl. Mater. Interfaces2018, 10, 28251–28255.

    CAS  Google Scholar 

  18. Xue, X. L.; Chen, R. P.; Chen, H. W.; Hu, Y.; Ding, Q. Q.; Liu, Z. T.; Ma, L. B.; Zhu, G. Y.; Zhang, W. J.; Yu, Q. et al. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets. Nano Lett.2018, 18, 7372–7377.

    CAS  Google Scholar 

  19. Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res.2019, 12, 1229–1249.

    CAS  Google Scholar 

  20. Li, H.; Li, J.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives. Angew. Chem., Int. Ed.2018, 57, 122–138.

    CAS  Google Scholar 

  21. Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater.2019, 31, 1806482.

    Google Scholar 

  22. Zhu, X. J.; Mou, S. Y.; Peng, Q. L.; Liu, Q.; Luo, Y. L.; Chen, G.; Gao, S. Y.; Sun, X. P. Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: Recent advances in catalyst development and performance improvement. J. Mater. Chem. A2020, 6, 1545–1556.

    Google Scholar 

  23. Kong, W. H.; Zhang, R.; Zhang, X. X.; Ji, L. S.; Yu, G. S.; Wang, T.; Luo, Y. L.; Shi, X. F.; Xu, Y. H.; Sun, X. P. WO3 nanosheets rich in oxygen vacancies for enhanced electrocatalytic N2 reduction to NH3. Nanoscale2019, 11, 19274–19277.

    CAS  Google Scholar 

  24. Song, J. J.; Huang, Z. F.; Pan, L.; Zou, J. J.; Zhang, X. W.; Wang, L. Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst. ACS Catal.2015, 5, 6594–6599.

    CAS  Google Scholar 

  25. Liu, X. F.; Fechler, N.; Antonietti, M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev.2013, 42, 8237–8265.

    CAS  Google Scholar 

  26. Hu, Z. M.; Xiao, X.; Jin, H. Y.; Li, T. Q.; Chen, M.; Liang, Z.; Guo, Z. F.; Li, J.; Wan, J.; Huang, L. et al. Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat. Commun.2017, 8, 15630.

    CAS  Google Scholar 

  27. Balaji, S.; Djaoued, Y.; Albert, A. S.; Ferguson, R. Z.; Brüning, R. Hexagonal tungsten oxide based electrochromic devices: Spectroscopic evidence for the li ion occupancy of four-coordinated square windows. Chem. Mater.2009, 21, 1381–1389.

    CAS  Google Scholar 

  28. Kalantar-zadeh, K.; Vijayaraghavan, A.; Ham, M. H.; Zheng, H. D.; Breedon, M.; Strano, M. S. Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide. Chem. Mater.2010, 22, 5660–5666.

    CAS  Google Scholar 

  29. Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc.2018, 140, 9434–9443.

    CAS  Google Scholar 

  30. Sun, Z. Y.; Huo, R. P.; Choi, C.; Hong, S.; Wu, T. S.; Qiu, J. S.; Yan, C.; Han, Z. S.; Liu, Y. C.; Soo, Y. L. et al. Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure. Nano Energy2019, 62, 869–875.

    CAS  Google Scholar 

  31. Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy2018, 53, 296–336.

    CAS  Google Scholar 

  32. Cao, N.; Chen, Z.; Zang, K. T.; Xu, J.; Zhong, J.; Luo, J.; Xu, X.; Zheng, G. F. Doping strain induced Bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat. Commun.2019, 10, 2877.

    Google Scholar 

  33. Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature2019, 570, 504–508.

    CAS  Google Scholar 

  34. Yu, B.; Li, H.; White, J.; Donne, S.; Yi, J. B.; Xi, S. B.; Fu, Y.; Henkelman, G.; Yu, H.; Chen, Z. L. et al. Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion. Adv. Funct. Mater.2020, 30, 1905665.

    CAS  Google Scholar 

  35. Hou, T. T.; Guo, R. H.; Chen, L. L.; Xie, Y. C. Z.; Guo, J. S.; Zhang, W. H.; Zheng, X. S.; Zhu, W. K.; Tan, X. P.; Wang, L. B. Atomic-level insights in tuning defective structures for nitrogen photofixation over amorphous SmOCl nanosheets. Nano Energy2019, 65, 104003.

    CAS  Google Scholar 

  36. Li, P. X.; Fu, W. Z.; Zhuang, P. Y.; Cao, Y. D.; Tang, C.; Watson, A. B.; Dong, P.; Shen, J. F.; Ye, M. X. Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation. Small2019, 15, 1902535.

    Google Scholar 

  37. Wang, Y. L.; Craven, M.; Yu, X. T.; Ding, J.; Bryant, P.; Huang, J.; Tu, X. Plasma-enhanced catalytic synthesis of ammonia over a Ni/Al2O3 catalyst at near-room temperature: Insights into the importance of the catalyst surface on the reaction mechanism. ACS Catal.2019, 12, 10780–10793.

    Google Scholar 

  38. Li, W. Y.; Zhang, C.; Han, M. M.; Ye, Y. X.; Zhang, S. B.; Liu, Y. Y.; Wang, G. Z.; Liang, C. H.; Zhang, H. M. Ambient electrosynthesis of ammonia using core-shell structured Au@C catalyst fabricated by one-step laser ablation technique. ACS Appl. Mater. Interfaces2019, 11, 44186–44195.

    CAS  Google Scholar 

  39. Chen, P. Z.; Zhang, N.; Wang, S. B.; Zhou, T. P.; Tong, Y.; Ao, C. C.; Yan, W. S.; Zhang, L. D.; Chu, W. S.; Wu, C. Z. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. USA2019, 116, 6635–6640.

    CAS  Google Scholar 

  40. Zhang, Y.; Shao, Q.; Long, S.; Huang, X. Q. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting. Nano Energy2018, 45, 448–455.

    CAS  Google Scholar 

  41. Zheng, T. T.; Sang, W.; He, Z. H.; Wei, Q. S.; Chen, B. W.; Li, H. L.; Cao, C.; Huang, R. J.; Yan, X. P.; Pan, B. C. et al. Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution. Nano Lett.2017, 17, 7968–7973.

    CAS  Google Scholar 

  42. Lin, Y. X.; Zhang, S. N.; Xue, Z. H.; Zhang, J. J.; Su, H.; Zhao, T. J.; Zhai, G. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nano-particles. Nat. Commun.2019, 10, 4380.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 11575084 and 51602153), the Natural Science Foundation of Jiangsu Province (No. BK20160795), the Fundamental Research Funds for the Central Universities (No. NE2018104). The author also thank a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wang or Jianping He.

Electronic Supplementary Material

12274_2020_2929_MOESM1_ESM.pdf

Regulating surface state of WO3 nanosheets by gamma irradiation for suppressing hydrogen evolution reaction in electrochemical N2 fixation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Jiang, C., Song, L. et al. Regulating surface state of WO3 nanosheets by gamma irradiation for suppressing hydrogen evolution reaction in electrochemical N2 fixation. Nano Res. 13, 2784–2790 (2020). https://doi.org/10.1007/s12274-020-2929-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2929-z

Keywords

Navigation