Skip to main content
Log in

Electrochemical assay of ampicillin using Fe3N-Co2N nanoarray coated with molecularly imprinted polymer

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Self-supported Fe3N-Co2N nanoarray with high electric conductivity and large surface area was prepared for growth of MIPs and further constructing a sensitive and stable electrochemical sensor. For the evaluation of its performance, Fe3N-Co2N is used as sensing electrode material, and AMP is used as template molecule to construct the MIP electrochemical sensor. Under the optimized conditions, the developed MIPs electrochemical sensor detects AMP with a low detection limit of 3.65 × 10−10 mol L−1 and shows outstanding reproducibility and stability. When the MIPs electrochemical sensor was applied to detect AMP in milk samples via standard addition method, the recovery within 97.06–102.43% with RSD of 1.05–2.11% was obtained. The fabrication of MIPs electrochemical sensor is highly promising for sensitive and selective electrochemical measurement and food safety testing. This work can provide theoretical guidance for truly challenging problems.

Principle diagram of MIP-EC sensor for detecting AMP

Molecular imprinted polymers (MIPs) are widely performed for construction of electrochemical (EC) sensors especially for detecting small molecules in complex environment. However, the large-scale and robust preparation of MIPs in situ on sensor platform limits their practical applications. We fabricated a MIPs EC sensor based on Fe3N-Co2N in situ grown on carbon cloth (CC) as the substrate platform (Fe3N-Co2N/CC) combining with MIPs as the target recognition element for the label-free detection of AMP. Under the optimal conditions, the developed MIPs EC sensor can detect AMP with a low detection limit of 3.65 × 10−10 mol L−1. When the AMP in milk is detected by the proposed EC sensor, it shows ideal results. Therefore, the use of self-supported Fe3N-Co2N nanoarray as the platform for the fabrication of MIPs EC sensors is highly promising for sensitive and selective EC measurement and point-of-care testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Huang Q, Zhao Z, Nie D, Jiang K, Guo W, Fan K, Zhang Z, Meng J, Wu Y, Han Z (2019) Molecularly imprinted poly(thionine)-based electrochemical sensing platform for fast and selective ultratrace determination of patulin. Anal Chem 91(6):4116–4123. https://doi.org/10.1021/acs.analchem.8b05791

    Article  CAS  Google Scholar 

  2. Gui R, Jin H, Guo H, Wang Z (2018) Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens Bioelectron 100:56–70. https://doi.org/10.1016/j.bios.2017.08.058

    Article  CAS  Google Scholar 

  3. BelBruno JJ (2019) Molecularly imprinted polymers. Chem Rev 119(1):94–119. https://doi.org/10.1021/acs.chemrev.8b00171

    Article  CAS  Google Scholar 

  4. Pei DN, Zhang AY, Pan XQ, Si Y, Yu HQ (2018) Electrochemical sensing of bisphenol A on facet-tailored TiO2 single crystals engineered by inorganic-framework molecular imprinting sites. Anal Chem 90(5):3165–3173. https://doi.org/10.1021/acs.analchem.7b04466

    Article  CAS  Google Scholar 

  5. Zhang C, Zhao F, He Y, She Y, Hong S, Ma J, Wang M, Cao Z, Li T, Ei-Aty AMA, Ping J, Ying Y, Wang J (2019) A disposable electrochemical sensor based on electrospinning of molecularly imprinted nanohybrid films for highly sensitive determination of the organotin acaricide cyhexatin. Microchim Acta 186(8):504. https://doi.org/10.1007/s00604-019-3631-2

    Article  CAS  Google Scholar 

  6. Ensafi AA, Nasr-Esfahani P, Rezaei B (2018) Metronidazole determination with an extremely sensitive and selective electrochemical sensor based on graphene nanoplatelets and molecularly imprinted polymers on graphene quantum dots. Sensors Actuators B Chem 270:192–199. https://doi.org/10.1016/j.snb.2018.05.024

    Article  CAS  Google Scholar 

  7. Liu Z, Zhang Y, Feng J, Han Q, Wei Q (2019) Ni(OH)2 nanoarrays based molecularly imprinted polymer electrochemical sensor for sensitive detection of sulfapyridine. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2019.02.079

  8. Liu Z, Zhang Y, Li B, Ren X, Ma H, Wei Q (2020) Novel ratiometric electrochemical sensor for no-wash detection of fluorene-9-bisphenol based on combining CoN nanoarray with molecularly imprinted polymers. Analyst. https://doi.org/10.1039/D0AN00345J

  9. Zhang Y, Chen X (2019) Nanotechnology and nanomaterial-based no-wash electrochemical biosensors: from design to application. Nanoscale 11(41):19105–19,118. https://doi.org/10.1039/C9NR05696C

    Article  CAS  Google Scholar 

  10. Peng X, Pi C, Zhang X, Li S, Huo K, Chu PK (2019) Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustain Energy Fuels 3(2):366–381. https://doi.org/10.1039/C8SE00525G

    Article  CAS  Google Scholar 

  11. Luo J, Zhao D, Yang M, Qu F (2018) Porous Ni3N nanosheet array as a catalyst for nonenzymatic amperometric determination of glucose. Microchim Acta 185(4):229. https://doi.org/10.1007/s00604-018-2764-z

    Article  CAS  Google Scholar 

  12. Zhou D, Cao X, Wang Z, Hao S, Hou X, Qu F, Du G, Asiri AM, Zheng C, Sun X (2017) Fe3N-Co2N nanowires array: a non-noble-metal bifunctional catalyst electrode for high-performance glucose oxidation and H2O2 reduction toward non-enzymatic sensing applications. Chem Eur J 23(22):5214–5218. https://doi.org/10.1002/chem.201700594

    Article  CAS  Google Scholar 

  13. Xie F, Cao X, Qu F, Asiri AM, Sun X (2018) Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sensors Actuators B Chem 255:1254–1261. https://doi.org/10.1016/j.snb.2017.08.098

    Article  CAS  Google Scholar 

  14. Al-Momani IF (2004) Flow-injection spectrophotometric determination of amoxcillin, cephalexin, ampicillin, and cephradine in pharmaceutical formulations. Anal Lett 37(10):2099–2110. https://doi.org/10.1081/AL-200026683

    Article  CAS  Google Scholar 

  15. Yu Z-g, Lai RY (2018) A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of ampicillin in complex samples. Talanta 176:619–624. https://doi.org/10.1016/j.talanta.2017.08.057

    Article  CAS  Google Scholar 

  16. Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Alibolandi M, Abnous K (2019) An electrochemical sensing platform based on ladder-shaped DNA structure and label-free aptamer for ultrasensitive detection of ampicillin. Biosens Bioelectron 133:230–235. https://doi.org/10.1016/j.bios.2019.03.044

    Article  CAS  Google Scholar 

  17. Song K-M, Jeong E, Jeon W, Cho M, Ban C (2012) Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Anal Bioanal Chem 402(6):2153–2161. https://doi.org/10.1007/s00216-011-5662-3

    Article  CAS  Google Scholar 

  18. Luo W, Hansen EB, Ang CYW, Deck J, Freeman JP, Thompson HC (1997) Simultaneous determination of amoxicillin and ampicillin in bovine milk by HPLC with fluorescence detection. J Agric Food Chem 45(4):1264–1268. https://doi.org/10.1021/jf960739l

    Article  CAS  Google Scholar 

  19. Rosati G, Ravarotto M, Scaramuzza M, De Toni A, Paccagnella A (2019) Silver nanoparticles inkjet-printed flexible biosensor for rapid label-free antibiotic detection in milk. Sensors Actuators B Chem 280:280–289. https://doi.org/10.1016/j.snb.2018.09.084

    Article  CAS  Google Scholar 

  20. Raksawong P, Nurerk P, Chullasat K, Kanatharana P, Bunkoed O (2019) A polypyrrole doped with fluorescent CdTe quantum dots and incorporated into molecularly imprinted silica for fluorometric determination of ampicillin. Microchim Acta 186(6):338. https://doi.org/10.1007/s00604-019-3447-0

    Article  CAS  Google Scholar 

  21. Wang J, Ma K, Yin H, Zhou Y, Ai S (2017) Aptamer based voltammetric determination of ampicillin using a single-stranded DNA binding protein and DNA functionalized gold nanoparticles. Microchim Acta 185(1):68. https://doi.org/10.1007/s00604-017-2566-8

    Article  CAS  Google Scholar 

  22. Shayesteh OH, Ghavami R (2019) Two colorimetric ampicillin sensing schemes based on the interaction of aptamers with gold nanoparticles. Microchim Acta 186(7):485. https://doi.org/10.1007/s00604-019-3524-4

    Article  CAS  Google Scholar 

  23. Luo J, Ma Q, Wei W, Zhu Y, Liu R, Liu X (2016) Synthesis of water-dispersible molecularly imprinted electroactive nanoparticles for the sensitive and selective paracetamol detection. ACS Appl Mater Interfaces 8(32):21028–21,038. https://doi.org/10.1021/acsami.6b05440

    Article  CAS  Google Scholar 

  24. Motia S, Bouchikhi B, Llobet E, El Bari N (2020) Synthesis and characterization of a highly sensitive and selective electrochemical sensor based on molecularly imprinted polymer with gold nanoparticles modified screen-printed electrode for glycerol determination in wastewater. Talanta 216:120953. https://doi.org/10.1016/j.talanta.2020.120953

    Article  CAS  Google Scholar 

  25. Kung CW, Lin CY, Lai YH, Vittal R, Ho KC (2011) Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose. Biosens Bioelectron 27(1):125–131. https://doi.org/10.1016/j.bios.2011.06.033

    Article  CAS  Google Scholar 

  26. Guo C, Zhang X, Huo H, Xu C, Han X (2013) Co3O4 microspheres with free-standing nanofibers for high performance non-enzymatic glucose sensor. Analyst 138(22):6727–6731. https://doi.org/10.1039/C3AN01403G

    Article  CAS  Google Scholar 

  27. Xie L, Asiri AM, Sun X (2017) Monolithically integrated copper phosphide nanowire: an efficient electrocatalyst for sensitive and selective nonenzymatic glucose detection. Sensors Actuators B Chem 244:11–16. https://doi.org/10.1016/j.snb.2016.12.093

    Article  CAS  Google Scholar 

  28. Zhou N, Zhang J, Tian Y (2014) Aptamer-based spectrophotometric detection of kanamycin in milk. Anal Methods 6(5):1569–1574. https://doi.org/10.1039/C3AY41816B

    Article  CAS  Google Scholar 

  29. Guliy OI, Zaitsev BD, Smirnov AV, Karavaeva OA, Borodina IA (2019) Sensor for ampicillin based on a microwave electrodynamic resonator. Biosens Bioelectron 130:95–102. https://doi.org/10.1016/j.bios.2019.01.030

    Article  CAS  Google Scholar 

  30. Rašić Mišić I, Miletić G, Mitić S, Mitić M, Pecev-Marinković E (2013) A simple method for the ampicillin determination in pharmaceuticals and human urine. Chem Pharm Bull(Tokyo) 61(9):913–919. https://doi.org/10.1248/cpb.c13-00197

    Article  Google Scholar 

  31. Rahman N, Khan S (2016) Circular dichroism spectroscopy: an efficient approach for the quantitation of ampicillin in presence of cloxacillin. Spectrochim Acta A Mol Biomol Spectrosc 160:26–33. https://doi.org/10.1016/j.saa.2016.02.009

    Article  CAS  Google Scholar 

  32. Pérez MIB, Rodríguez LC, Cruces-Blanco C (2007) Analysis of different β-lactams antibiotics in pharmaceutical preparations using micellar electrokinetic capillary chromatography. J Pharm Biomed Anal 43(2):746–752. https://doi.org/10.1016/j.jpba.2006.07.035

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the National Natural Science Foundation of China 21775053, the Natural Science Foundation of Shandong Province (No. 2019GSF111023, ZR2017MB027), and the National Key Scientific Instrument and Equipment Development Project of China (No. 21627809). Yong Zhang is sponsored by the China Scholarship Council (CSC), and Y. G. W. thanks the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.00 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Fan, T., Zhang, Y. et al. Electrochemical assay of ampicillin using Fe3N-Co2N nanoarray coated with molecularly imprinted polymer. Microchim Acta 187, 442 (2020). https://doi.org/10.1007/s00604-020-04432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04432-2

Keywords

Navigation