Skip to main content

Advertisement

Log in

Determination of miRNAs in serum of cancer patients with a label- and enzyme-free voltammetric biosensor in a single 30-min step

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The preparation of an integrated biosensor for the easy, fast, and sensitive determination of miRNAs is described based on a direct hybridization format and a label-free voltammetric detection. The biosensor involves a disposable carbon electrode substrate doubly nanostructured with reduced graphene oxide (rGO) and AuNPs modified with pyrene carboxylic acid (PCA) and 6-ferrocenylhexanethiol (Fc-SH), respectively. A synthetic amino terminated DNA capture probe was covalently immobilized on the CO2H moieties of PCA/rGO, while Fc-SH was used as a signaling molecule. Differential pulse voltammetry was employed to record the decrease in the oxidation peak current of Fc after the hybridization due to the hindering of the electron transfer upon the formation of the DNA-RNA duplex on the electrode surface. The stepwise biosensor preparation was characterized by surface and electrochemical techniques showing the role played by each biosensor component as well as the reliability of the target miRNA determination. The determination of the oncogene miRNA-21 synthetic target allowed quantification in the low femtomolar range (LOD of 5 fM) with a high discrimination of single-base mismatched sequences in a single 30-min incubation step. The bioplatform allowed the determination of the target miRNA in a small amount of total RNA extracted from breast cancer (BC) cells or directly in serum samples collected from BC patients without the need for prior extraction, purification, amplification, or reverse transcription of the genetic material and with no matrix effect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12(11):847–865. https://doi.org/10.1038/nrd4140

    Article  CAS  Google Scholar 

  2. Tufman A, Tian F, Huber RM (2013) Can MicroRNAs improve the management of lung cancer patients? A Clinician's perspective. Theranostics 3(12):953–963

    Article  CAS  Google Scholar 

  3. Berger F, Reiser MF (2013) Micro-RNAs as potential new molecular biomarkers in oncology: have they reached relevance for the clinical imaging sciences? Theranostics 3(12):943–952

    Article  CAS  Google Scholar 

  4. Kappel A, Keller A (2017) miRNA assays in the clinical laboratory: workflow, detection technologies and automation aspects. Clin Chem Lab Med 55(5):636–647

    Article  CAS  Google Scholar 

  5. Bellassai N, D'agata R, Jungbluth V, Spoto G (2019) Surface plasmon resonance for biomarker detection: advances in non-invasive cancer diagnosis. Front Chem 7:570

    Article  CAS  Google Scholar 

  6. Han S, Liu W, Yang S, Wang R (2019) Facile and label-free electrochemical biosensors for MicroRNA detection based on DNA origami nanostructures. ACS Omega 4(6):11025–11031

    Article  CAS  Google Scholar 

  7. Islam MN, Masud MK, Nguyen N-T, Gopalan V, Alamri HR, Alothman ZA, Al Hossain MS, Yamauchi Y, Lamd AK, Shiddiky MJ (2018) Gold-loaded nanoporous ferric oxide nanocubes for electrocatalytic detection of microRNA at attomolar level. Biosens Bioelectron 101:275–281

    Article  CAS  Google Scholar 

  8. Li J, Fu W, Wang Z, Dai Z (2019) Substrate specificity-enabled terminal protection for direct quantification of circulating MicroRNA in patient serums. Chem Sci 10(21):5616–5623

    Article  CAS  Google Scholar 

  9. Zhu D, Liu W, Zhao D, Hao Q, Li J, Huang J, Shi J, Chao J, Su S, Wang L (2017) Label-free electrochemical sensing platform for microRNA-21 detection using thionine and gold nanoparticles co-functionalized MoS2 nanosheet. ACS Appl Mater Interfaces 9(41):35597–35603

    Article  CAS  Google Scholar 

  10. Cui F, Zhou Z, Zhou HS (2019) Measurement and analysis of cancer biomarkers based on electrochemical biosensors. J Electrochem Soc 167(3):037525

    Article  Google Scholar 

  11. Kangkamano T, Numnuam A, Limbut W, Kanatharana P, Vilaivan T, Thavarungkul P (2018) Pyrrolidinyl PNA polypyrrole/silver nanofoam electrode as a novel label-free electrochemical miRNA-21 biosensor. Biosens Bioelectron 102:217–225

    Article  CAS  Google Scholar 

  12. Salahandish R, Ghaffarinejad A, Omidinia E, Zargartalebi H, Majidzadeh-A K, Naghib SM, Sanati-Nezhad A (2018) Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene. Biosens Bioelectron 120:129–136

    Article  CAS  Google Scholar 

  13. Islam MN, Gorgannezhad L, Masud MK, Tanaka S, Hossain MSA, Yamauchi Y, Nguyen NT, Shiddiky MJ (2018) Graphene-oxide-loaded superparamagnetic iron oxide nanoparticles for ultrasensitive electrocatalytic detection of MicroRNA. ChemElectroChem 5(17):2488–2495

    Article  CAS  Google Scholar 

  14. Lu J, Wang J, Hu X, Gyimah E, Yakubu S, Wang K, Wu X, Zhang Z (2019) Electrochemical biosensor based on tetrahedral DNA nanostructures and G-quadruplex–hemin conformation for the ultrasensitive detection of MicroRNA-21 in serum. Anal Chem 91(11):7353–7359

    Article  CAS  Google Scholar 

  15. Zouari M, Campuzano S, Pingarrón JM, Raouafi N (2020) Femtomolar direct voltammetric determination of circulating miRNAs in sera of cancer patients using an enzymeless biosensor. Anal Chim Acta 1104:188–198

    Article  CAS  Google Scholar 

  16. Martin C, Grgicak C (2014) The effect of repeated activation on screen-printed carbon electrode cards. ECS Trans 61(26):1–8

    Article  Google Scholar 

  17. Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13(2):133–137

    Article  CAS  Google Scholar 

  18. Hu Y, Jin J, Wu P, Zhang H, Cai C (2010) Graphene–gold nanostructure composites fabricated by electrodeposition and their electrocatalytic activity toward the oxygen reduction and glucose oxidation. Electrochim Acta 56(1):491–500

    Article  CAS  Google Scholar 

  19. Mercier D, Haddada MB, Huebner M, Knopp D, Niessner R, Salmain M, Proust A, Boujday S (2015) Polyoxometalate nanostructured gold surfaces for sensitive biosensing of benzo [a] pyrene. Sensors Actuators B Chem 209:770–774

    Article  CAS  Google Scholar 

  20. Rashid JIA, Yusof NA (2017) The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: a review. Sens Biosensing Res 16:19–31

  21. Labib M, Khan N, Ghobadloo SM, Cheng J, Pezacki JP, Berezovski MV (2013) Three-mode electrochemical sensing of ultralow microRNA levels. J Am Chem Soc 135(8):3027–3038

    Article  CAS  Google Scholar 

  22. Campuzano S, Torrente-Rodríguez RM, López-Hernández E, Conzuelo F, Granados R, Sánchez-Puelles JM, Pingarrón JM (2014) Magnetobiosensors based on viral protein p19 for microRNA determination in cancer cells and tissues. Angew Chem Int Ed 53(24):6168–6171

    Article  CAS  Google Scholar 

  23. Torrente-Rodríguez R, Campuzano S, López-Hernández E, Granados R, Sánchez-Puelles J, Pingarrón J (2014) Direct determination of miR-21 in total RNA extracted from breast cancer samples using magnetosensing platforms and the p19 viral protein as detector bioreceptor. Electroanalysis 26(10):2080–2087

    Article  Google Scholar 

  24. Singh R, Hong S, Jang J (2017) Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical immunosensor integrated with a microfluidic platform. Sci Rep 7. https://doi.org/10.1038/srep42771

  25. Zaharie-Butucel D, Potara M, Craciun A, Boukherroub R, Szunerits S, Astilean S (2017) Revealing the structure and functionality of graphene oxide and reduced graphene oxide/pyrene carboxylic acid interfaces by correlative spectral and imaging analysis. Phys Chem Chem Phys 19(24):16038–16046

    Article  CAS  Google Scholar 

  26. Tarcan R, Todor-Boer O, Petrovai I, Leordean C, Astilean S, Botiz I (2020) Reduced graphene oxide today. J Mater Chem C 8(4):1198–1224. https://doi.org/10.1039/c9tc04916a

    Article  CAS  Google Scholar 

  27. Campuzano S, Yanez-Sedeno P, Pingarron JM (2019) Nanoparticles for nucleic-acid-based biosensing: opportunities, challenges, and prospects. Anal Bioanal Chem 411(9):1791–1806. https://doi.org/10.1007/s00216-018-1273-6

    Article  CAS  Google Scholar 

  28. Luo XL, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4):319–326. https://doi.org/10.1002/elan.200503415

    Article  CAS  Google Scholar 

  29. Wang J, Li J, Baca AJ, Hu J, Zhou F, Yan W, Pang D-W (2003) Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75(15):3941–3945

    Article  CAS  Google Scholar 

  30. Baca AJ, Zhou F, Wang J, Hu J, Li J, Wang J, Chikneyan ZS (2004) Attachment of ferrocene-capped gold nanoparticle/streptavidin conjugates onto electrode surfaces covered with biotinylated biomolecules for enhanced voltammetric analysis. Electroanalysis 16(1–2):73–80

    Article  CAS  Google Scholar 

  31. Lu H, Wu L, Wang J, Wang Z, Yi X, Wang J, Wang N (2018) Voltammetric determination of the Alzheimer’s disease-related ApoE 4 gene from unamplified genomic DNA extracts by ferrocene-capped gold nanoparticles. Microchim Acta 185(12):549

    Article  Google Scholar 

  32. Malvano F, Pilloton R, Albanese D (2018) Sensitive detection of Escherichia coli O157: H7 in food products by impedimetric immunosensors. Sensors 18(7):2168

    Article  Google Scholar 

  33. Kwon D, Jeong H, Chung BH (2011) Label-free electrochemical detection of human α-thrombin in blood serum using ferrocene-coated gold nanoparticles. Biosens Bioelectron 28(1):454–458

    Article  CAS  Google Scholar 

  34. Rafiee-Pour H-A, Behpour M, Keshavarz M (2016) A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21. Biosens Bioelectron 77:202–207

    Article  CAS  Google Scholar 

  35. Boriachek K, Umer M, Islam MN, Gopalan V, Lam AK, Nguyen N-T, Shiddiky MJ (2018) An amplification-free electrochemical detection of exosomal miRNA-21 in serum samples. Analyst 143(7):1662–1669

    Article  CAS  Google Scholar 

  36. Vidotti M, Carvalhal RF, Mendes RK, Ferreira D, Kubota LT (2011) Biosensors based on gold nanostructures. J Braz Chem Soc 22(1):3–20

    Article  CAS  Google Scholar 

  37. Zouari M, Campuzano S, Pingarrón JM, Raouafi N (2018) Amperometric biosensing of miRNA-21 in serum and cancer cells at nanostructured platforms using anti-DNA–RNA hybrid antibodies. ACS Omega 3(8):8923–8931

    Article  CAS  Google Scholar 

  38. Zouari M, Campuzano S, Pingarrón J, Raouafi N (2018) Ultrasensitive determination of microribonucleic acids in cancer cells with nanostructured-disposable electrodes using the viral protein p19 for recognition of ribonucleic acid/microribonucleic acid homoduplexes. Electrochim Acta 262:39–47

    Article  CAS  Google Scholar 

  39. Xu F, Yang T, Chen Y (2016) Quantification of microRNA by DNA–peptide probe and liquid chromatography–tandem mass spectrometry-based quasi-targeted proteomics. Anal Chem 88(1):754–763

    Article  CAS  Google Scholar 

  40. Liu M, Hui CY, Zhang Q, Gu J, Kannan B, Jahanshahi-Anbuhi S, Filipe CD, Brennan JD, Li Y (2016) Target-induced and equipment-free DNA amplification with a simple paper device. Angew Chem Int Ed 55(8):2709–2713

    Article  Google Scholar 

Download references

Funding

The Tunisian Ministry of Higher Education and Scientific Research (Lab. LR99ES15). NR thanks the Tunisian PRF program for financial support (NanoFastResponse ref. PRF2017-D4P1, SmartBioSens ref. PRFCOV19-D2P2 and COVID-PP ref. PRFCOV19-D3P1) and Prof. Besma Loueslati (University of Tunis El Manar, Biology department) for providing the serum samples used in this study. Ministerio de Ciencia e Innovación Project, PID2019-103899RB-I00 and the TRANSNANOAVANSENS−CM Program from the Comunidad de Madrid (Grant S2018/NMT−4349) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Raouafi.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 666 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zouari, M., Campuzano, S., Pingarrón, J.M. et al. Determination of miRNAs in serum of cancer patients with a label- and enzyme-free voltammetric biosensor in a single 30-min step. Microchim Acta 187, 444 (2020). https://doi.org/10.1007/s00604-020-04400-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04400-w

Keywords

Navigation