Skip to main content
Log in

Decay Properties of Conventional and Hybrid Charmonium Mesons

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this paper, decay constants, lepton and photon decay widths for radially and orbitally excited conventional, as well as hybrid, charmonium mesons are calculated. The Schrödinger equation with non-relativistic potential model is used to obtain the spectrum and the radial wave function at the origin for the S and the P states conventional, as well as hybrid, charmonium mesons. The calculated spectrum agree with experimental findings within a 0.43-GeV standard deviation. The leptonic decay widths agree with other theoretical results, but are lower than the experimental measurements. The two-photon decay widths for 1S0 and 3P2 states are in agreement with the experimental findings, but that for the 3P0 states is not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gell-Mann, Phys. Lett. 8, 214 (1964).

    ADS  Google Scholar 

  2. G. Zweig, CERN-TH-401 (1964); CERN-TH-412 (1964).

  3. K. J. Juge, J. Kuti and C. J. Morningstar, Nucl. Phys. B (Proc. Suppl.) 63, 326 (1998).

    ADS  Google Scholar 

  4. C. McNeile and C. Michael, Phys. Rev. D 73, 074506 (2006).

    ADS  Google Scholar 

  5. Y. Liu and X. Q. Luo, Phys. Rev. D 73, 054510 (2006).

    ADS  Google Scholar 

  6. L. Liu et al., J. High Energy Phys. 07, 126 (2012).

    ADS  Google Scholar 

  7. C. Bernard et al., Nucl. Phys. B (Proc. Suppl.) 119, 260 (2003).

    ADS  Google Scholar 

  8. X. Q. Luo and Z. H. Mei, Nucl. Phys. B (Proc. Suppl.) 119, 263 (2003).

    ADS  Google Scholar 

  9. T. W. Chiu and T. H. Hsieh, Phys. Rev. D 73, 094510 (2006).

    ADS  Google Scholar 

  10. X. Q. Luo and Y. Liu, Phys. Rev. D 74, 034502 (2006)

    ADS  Google Scholar 

  11. X. Q. Luo and Y. Liu, Phys. Rev. D 74, 039902 (2006).

    ADS  Google Scholar 

  12. G. S. Bali, Int. J. Mod. Phys. A 21, 5610 (2006).

    ADS  Google Scholar 

  13. K. J. Juge et al., Proc. Sci. LAT2006, 193 (2006).

    Google Scholar 

  14. J. J. Dudek and E. Rrapaj, Phys. Rev. D 78, 094504 (2008).

    ADS  Google Scholar 

  15. P. Lacock, C. Michael, P. Boyle and P. Rowland, Phys. Lett. B 401, 308 (1997).

    ADS  Google Scholar 

  16. G. J. Ding and M. L. Yan, Phys. Lett. B 650, 390 (2007).

    ADS  Google Scholar 

  17. N. Isgur and J. Paton, Phys. Lett. B 124, 247 (1983).

    ADS  Google Scholar 

  18. N. Isgur and J. Paton, Phys. Rev. D 31, 2910 (1985).

    ADS  Google Scholar 

  19. N. Isgur, R. Kokosky and J. Paton, Phys. Rev. Lett. 54, 869 (1985).

    ADS  Google Scholar 

  20. F. E. Close and P. R. Page, Nucl. Phys. B 443, 233 (1995).

    ADS  Google Scholar 

  21. F. E. Close and P. R. Page, Phys. Rev. D 52, 1706 (1995).

    ADS  Google Scholar 

  22. T. Barnes, F. E. Close and E. S. Swanson, Phys. Rev. D 52, 5242 (1995).

    ADS  Google Scholar 

  23. Y. S. Kalashnikova and A. V. Nefediev, Phys. Rev. D 77, 054025 (2008).

    ADS  Google Scholar 

  24. C. Semay, F. Buisseret and B. Silvestre-Brac, Phys. Rev. D 79, 094020 (2009).

    ADS  Google Scholar 

  25. E. S. Swanson and A. P. Szczepaniak, Phys. Rev. D 59, 014035 (1998).

    ADS  Google Scholar 

  26. F. Iddir, S. Safir and O. Pene, Phys. Lett. B 433, 125 (1998).

    ADS  Google Scholar 

  27. L. Semlala and F. Iddir, Int. J. Mod. Phys. A 23, 5229 (2008).

    ADS  Google Scholar 

  28. R. Berg, D. Harnett, R. T. Kleiv and T. G. Steele, Phys. Rev. D 86, 034002 (2012).

    ADS  Google Scholar 

  29. D. Harnett, R. T. Kleiv, T. G. Steele and H. Y. Jin, J. Phys. G 39, 125003 (2012).

    ADS  Google Scholar 

  30. H. Y. Jin, J. G. Korner and T. G. Steele, Phys. Rev. D 67, 014025 (2003).

    ADS  Google Scholar 

  31. C. F. Qiao, L. Tang, G. Hao and X. Q. Li, J. Phys. G 39, 015005 (2012).

    ADS  Google Scholar 

  32. R. T. Kleiv, D. Harnett, T. G. Steele and H. Y. Jin, Nucl. Phys. B (Proc. Suppl.) 234, 150 (2013).

    ADS  Google Scholar 

  33. W. Chen et al., J. High Energy Phys. 09, 19 (2013).

    ADS  Google Scholar 

  34. N. Akbar, B. Masud and S. Noor, Eur. Phys. J. A 47, 124 (2011)

    ADS  Google Scholar 

  35. N. Akbar, B. Masud and S. Noor, Eur. Phys. J. A 50, 121(E) (2014).

    ADS  Google Scholar 

  36. T. Barnes, S. Godfrey and E. S. Swanson, Phys. Rev. D 72, 054026 (2005).

    ADS  Google Scholar 

  37. S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).

    ADS  Google Scholar 

  38. R. Van Royen and V. F. Weisskopf, Nuovo Cimento 50, 617 (1967).

    ADS  Google Scholar 

  39. J. P. Lansberg and T. N. Pham, Phys. Rev. D 79, 094016 (2009).

    ADS  Google Scholar 

  40. N. R. Sonia et al., Eur. Phys. J. C 78, 592 (2018).

    ADS  Google Scholar 

  41. M. B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008).

    ADS  Google Scholar 

  42. A. Sultan, N. Akbar, B. Masud and F. Akram, Phys. Rev. D 90, 054001 (2014).

    ADS  Google Scholar 

  43. C. Patrignani et al., Chin. Phys. C 40, 100001 (2016).

    ADS  Google Scholar 

  44. M. Ambrogiani et al., Phys. Lett. B 566, 45 (2003).

    ADS  Google Scholar 

  45. M. Tanabashi et al., Phys. Rev. D 98, 030001 (2018) and 2019 update.

    ADS  Google Scholar 

  46. B. Patel and P. C. Vinodkumar, J. Phys. G 36, 035003 (2009).

    ADS  Google Scholar 

  47. D. Becirevic et al., Nucl. Phys. B 883, 306 (2014).

    ADS  MathSciNet  Google Scholar 

  48. O. Lakhina and E. S. Swanson, Phy. Rev. D 74, 014012 (2006).

    ADS  Google Scholar 

  49. D. Silverman and H. Yao, Phys Rev. D 36, 3392 (1987).

    ADS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the financial support provided by the of Higher Education Commission of Pakistan through National Research Program for Universities project 7969.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosheen Akbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, N. Decay Properties of Conventional and Hybrid Charmonium Mesons. J. Korean Phys. Soc. 77, 17–24 (2020). https://doi.org/10.3938/jkps.77.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.17

Keywords

Navigation