Skip to main content
Log in

Design of Transparent Multicolor LED Signage with an Oxide-Metal-Oxide Interconnect Electrode

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

A Correction to this article was published on 11 August 2020

This article has been updated

Abstract

A transparent light emitting diode (LED) panel with a 16 × 16 multicolor LED array for a signage application is proposed and studied based on experimental and simulation results. As a transparent electrode, oxide/metal/oxide (OMO) trilayers with various Al interlayer thicknesses were fabricated and characterized using an established a simulation model. Using commercial ray tracing optical and SPICE simulation tools, we designed the LED panel and investigated in its optical and electrical properties. Moreover, in order to resolve the waveguide effect and voltage drop issue across the panel, we integrated additional optical structures and various OMO width into the design. The results show that the OMO electrode interconnects and proposed design considerations are pivotal aspects toward achieving transparent LED digital signage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 11 August 2020

    This paper was published with a typographical error in Acknowledgments on page 86. The grant number NRF-2019M3C1B909055 should read NRF-2019M3C1B9090559.

References

  1. S. Sutthana, N. Hongsith and S. Choopun, Curr. Appl. Phys. 10, 813 (2010).

    Article  ADS  Google Scholar 

  2. S. Song et al., Vacuum 85, 39 (2010).

    Article  ADS  Google Scholar 

  3. R. D. Sahu, S. Lin and J. Huang, Appl. Surf. Sci. 253, 4886 (2007).

    Article  ADS  Google Scholar 

  4. Y. Park, K. Choi, H. Kim and J. Kang, Electrochem. Solid-State Lett. 13, J39 (2010).

    Article  Google Scholar 

  5. M. Bender et al., Thin Solid Films 326, 67 (1998).

    Article  ADS  Google Scholar 

  6. M. Shakiba, A. Kosarian and E. Farshidi, J. Mater. Sci.: Mater. Electron. 28, 787 (2017).

    Google Scholar 

  7. R. D. Cairns et al., Appl. Phys. Lett. 76, 1425 (2000).

    Article  ADS  Google Scholar 

  8. C. Li et al., Appl. Surf. Sci. 285, 505 (2013).

    Article  ADS  Google Scholar 

  9. J. Kim et al., ACS Nano 5, 3222 (2011).

    Article  ADS  Google Scholar 

  10. C. Liu and X. Yu, Nanoscale Res. Lett. 6, 75 (2011).

    Article  ADS  Google Scholar 

  11. D. Leem et al., Adv. Mater. 23, 4371 (2011).

    Article  Google Scholar 

  12. H. Park et al., Nano Lett. 14, 5148 (2014).

    Article  ADS  Google Scholar 

  13. K. Kim et al., Nature 457, 706 (2009).

    Article  ADS  Google Scholar 

  14. C. P. Chen et al., ACS Nano 4, 4403 (2010).

    Article  Google Scholar 

  15. Y. Xia, L. Sun and J. Ouyang, Adv. Mater. 24, 2436 (2012).

    Article  Google Scholar 

  16. W. Cao, Y. Li, E. Wrzesniewski and T. W. Hammond, Org. Electron. 13, 2221 (2012).

    Article  Google Scholar 

  17. C. Guillen and J. Herrero, Thin Solid Films 520, 1 (2011).

    Article  ADS  Google Scholar 

  18. W. Wei et al., J. Mater. Sci. Technol. 33, 1107 (2017).

    Article  Google Scholar 

  19. J. Yu and S. Lee, Trans. Electr. Electron. Mater. 19, 212 (2018).

    Article  Google Scholar 

  20. K. Choi et al., Appl. Phys. Lett. 92, 223302 (2008).

    Article  ADS  Google Scholar 

  21. R. D. Sahu, S. Lin and J. Huang, Appl. Surf. Sci. 252, 7509 (2006).

    Article  ADS  Google Scholar 

  22. M. Theuring, M. Vehse, K. von Maydell and C. Agert, Thin Solid Films 558, 294 (2014).

    Article  ADS  Google Scholar 

  23. T. Winkler et al., Org. Electron. 12, 1612 (2011).

    Article  Google Scholar 

  24. N. E. Cho, P. Moon, C. Kim and I. Yun, Expert Syst. Appl. 39, 8885 (2012).

    Article  Google Scholar 

  25. K. Choi, J. Kim, Y. Lee and H. Kim, Thin Solid Films 341, 152 (1999).

    Article  ADS  Google Scholar 

  26. H. Kim, K. Seo and H. Kim, Trans. Mater. Res. Soc. Jpn. 40, 401 (2015).

    Article  Google Scholar 

  27. M. Girtan, Sol. Energy Mater. Sol. Cells 100, 153 (2012).

    Article  Google Scholar 

  28. S. Lee, Y. Park and T. Seong, J. Alloys Compd. 776, 960 (2019).

    Article  Google Scholar 

  29. S. Lee, E. Cho and S. Kwon, Appl. Surf. Sci. 487, 990 (2019).

    Article  ADS  Google Scholar 

  30. C. Wu, RSC Adv. 8, 11862 (2018).

    Article  Google Scholar 

  31. Synopsys Inc., CA, USA, HSPICE and RF Command Reference (2007).

Download references

Acknowledgments

This research was funded by the National Research Foundation of Korea (NRF-2019M3C1B909055), and partly supported by the Industy technology R&D program of MOTIE/KEIT (10063316, Development of core technology of tiling active matrix panel, aiming 200-inch UHD class display). The simulation tools were supported by the IDEC (IC Design Education Center) Program and CYFEM, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geonwook Yoo or Min Suk Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.Y., Jeon, H., Park, N. et al. Design of Transparent Multicolor LED Signage with an Oxide-Metal-Oxide Interconnect Electrode. J. Korean Phys. Soc. 77, 82–86 (2020). https://doi.org/10.3938/jkps.77.82

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.82

Keywords

Navigation