Skip to main content

Advertisement

Log in

The Implications of Pressure on Electronic, Magnetic, Mechanical, and Elastic Properties of Cobalt and Cobalt Hydride: DFT Calculation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, we have studied the impact of the pressure on the magnetic, elastic, and mechanical properties of the cobalt Co and cobalt hydride CoH using the full-potential linearized augmented plane wave (FPLAPW) method within the generalized gradient approximation (GGA). The obtained results show an excellent agreement with the available experimental and theoretical data at zero pressure, whereas for pressures up to 20 GPa, the results obtained are considered the first quantitative theoretical prediction for cobalt and cobalt hydride. The calculated electronic properties and spin magnetic moment proved that the metallic and ferromagnetic aspects are preserved for both Co and CoH under different pressure values. Moreover, the results achieved for the elastic constants Cij and the mechanical properties (bulk modulus B, shear modulus G, Young’s modulus Y, and Poisson’s ratio ν) verified that studied systems are mechanically stable under the tested pressure range. Besides, the discussed results reveal the enhancement in the ductility for both Co and CoH with increasing pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Setten, M., de Wijs, G.A., et al.: Phys. Rev. B. 76(7), 075125 (2007). https://doi.org/10.1103/PhysRevB.76.075125

    Article  ADS  Google Scholar 

  2. Lee, H., Choi, W.I., Nguyen, M.C., Cha, M., Moon, E., Ihm, J.: Ab initio study of dihydrogen binding in metal-decorated polyacetylene for hydrogen storage. Phys. Rev. B. 76(19), 195110 (2007). https://doi.org/10.1103/PhysRevB.76.195110

    Article  ADS  Google Scholar 

  3. Yang, F.H., Yang, R.T.: Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: insight into hydrogen storage in carbon nanotubes. Carbon. 40(3), 437–444 (2002). https://doi.org/10.1016/S0008-6223(01)00199-3

    Article  Google Scholar 

  4. Banerjee, P., Das, G.P.: 3d-transition metal induced enhancement of molecular hydrogen adsorption on Mg (0001) surface: an Ab-initio study. Journal of Rheology. 1731(1), 080028 (2016). https://doi.org/10.1063/1.4947906

    Article  Google Scholar 

  5. Varunaa, R., Ravindran, P.: Potential hydrogen storage materials from metal decorated 2D-C2N: an ab initio study. Phys. Chem. Chem. Phys. 21(45), 25311–25322 (2019). https://doi.org/10.1039/C9CP05105H

    Article  Google Scholar 

  6. Garrier, S., Chaise, A., Rango, P., Marty, P., Delhomme, B., Fruchart, D., Miraglia, S.: MgH2 intermediate scale tank tests under various experimental conditions. Int. J. of Hydrogen Energy. 36(16), 9719–9726 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.017

    Article  Google Scholar 

  7. Liu, Y., Zou, J., Zeng, X., Ding, W.: Study on hydrogen storage properties of Mg–X (X = Fe, Co, V) nano-alloys co-precipitated from solution. RSC Adv. 5(10), 7687–7696 (2015). https://doi.org/10.1039/C4RA12977F

    Article  Google Scholar 

  8. Wang, Y., Lü, S., Zhou, Z., Zhou, W., Guo, J., Lan, Z.: Effect of transition metal on the hydrogen storage properties of Mg–Al alloy. J. Mater. Sci. 52, 2392–2399 (2017). https://doi.org/10.1007/s10853-016-0533-0

    Article  ADS  Google Scholar 

  9. Kittel, C.: Introduction to solid state physics, 5th edn. Wiley Eastern Ltd (1976)

  10. Dudnikov, V.A., Orlov, Y.S., Gavrilkin, S.Y., Gorev, M.V., Vereshchagin, S.N., Solovyov, L.A., Perov, N.S., Ovchinnikov, S.G.: Effect of Gd and Sr ordering in A sites of doped Gd0.2Sr0.8CoO3−δ perovskite on its structural, magnetic, and thermodynamic properties. J. Phys. Chem. C. 120(25), 13443–13449 (2016). https://doi.org/10.1021/acs.jpcc.6b04810

    Article  Google Scholar 

  11. Knyazev, Y.V., Kazak, N.V., Platunov, M.S., Ivanova, N.B., Bezmaternykh, L.N., Arauzo, A., Bartolomé, J., Ovchinnikov, S.G.: Disorder- and correlation-induced charge carriers localization in oxyborate MgFeBO4, Mg0.5Co0.5FeBO4, CoFeBO4 single crystals. J. Alloys. Compd. 642, 232–237 (2015). https://doi.org/10.1016/j.jallcom.2015.04.056

    Article  Google Scholar 

  12. Men’shikov, V.V., Rudenko, V.V., Tugarinov, V.I., Vorotynov, A.M., Ovchinnikov, S.G.: Uniaxial magnetic anisotropy of rhombohedral CoCO3 crystals at T = 0 K. Phys. Solid State. 56(3), 468–472 (2014). https://doi.org/10.1134/S1063783414030196

    Article  ADS  Google Scholar 

  13. Kazak, N.V., Ivanova, N.B., Rudenko, V.V., Vasil’ev, A.D., Velikanov, D.A., Ovchinnikov, S.G.: Low-field magnetization of ludwigites Co3O2BO3 and Co3 − x Fe x O2BO3 (x ≈ 0.14). Phys. Solid State. 51(5), 966–969 (2009). https://doi.org/10.1134/S1063783409050138

    Article  ADS  Google Scholar 

  14. Najarzadegan, M., Karimzadeh, F., Salimijazi, H.R., Adhami, S.: The effect of reduction process parameters on magnetic and structural properties of SmCo/Co nanocomposites. J. Supercond. Nov. Magn. 33(3), 783–793 (2020). https://doi.org/10.1007/s10948-019-05257-8

    Article  Google Scholar 

  15. Ivanova, N.B., Kazak, N.V., Michel, C.R., Balaev, A.D., Ovchinnikov, S.G.: Low-temperature magnetic behavior of the rare-earth cobaltites GdCoO3 and SmCoO3. Phys. Solid State. 49(11), 2126–2131 (2007). https://doi.org/10.1134/S1063783407110182

    Article  ADS  Google Scholar 

  16. Orlov, Y.S., Solovyov, L.A., Dudnikov, V.A., Fedorov, A.S., Kuzubov, A.A., Kazak, N.V., Voronov, V.N., Vereshchagin, S.N., Shishkina, N.N., Perov, N.S., Lamonova, K.V., Babkin, R.Y., Pashkevich, Y.G., Anshits, A.G., Ovchinnikov, S.G.: Structural properties and high-temperature spin and electronic transitions in GdCoO3: experiment and theory. Phys. Rev. B. 88(23), 235105 (2013). https://doi.org/10.1103/PhysRevB.88.235105

    Article  ADS  Google Scholar 

  17. Dudnikov, V.A., Orlov, Y.S., Kazak, N.V., Fedorov, A.S., Solov’yov, L.A., Vereshchagin, S.N., Burkov, A.T., Novikov, S.V., Ovchinnikov, S.G.: Thermoelectric properties and stability of the Re0.2Sr0.8CoO3-δ (Re = Gd, Dy) complex cobalt oxides in the temperature range of 300–800°K. Ceram. Int. 45(5), 5553–5558 (2019). https://doi.org/10.1016/j.ceramint.2018.12.013

    Article  Google Scholar 

  18. Knyazev, Y.V., Kazak, N.V., Nazarenko, I.I., Sofronova, S.N., Rostovtsev, N.D., Bartolome, J., Arauzo, A., Ovchinnikov, S.G.: Effect of magnetic frustrations on magnetism of the Fe3BO5 and Co3BO5 ludwigites. J. Magn. Magn. Mater. 474, 493–500 (2019). https://doi.org/10.1016/j.jmmm.2018.10.126

    Article  ADS  Google Scholar 

  19. Hsu, H.S., Chang, Y.Y., Chin, Y.Y., Lin, H.J., Chen, C.T., Sun, S.J., Zharkov, S.M., Lin, C.R., Ovchinnikov, S.G.: Exchange bias in graphitic C/Co composites. Carbon. 114, 642–648 (2017). https://doi.org/10.1016/j.carbon.2016.12.060

    Article  Google Scholar 

  20. Kazak, N.V., Platunov, M.S., Knyazev, Y.V., Ivanova, N.B., Zubavichus, Y.V., Veligzhanin, A.A., Vasiliev, A.D., Bezmaternykh, L.N., Bayukov, O.A., Arauzo, A., Bartolomé, J., Lamonova, K.V., Ovchinnikov, S.G.: Crystal and local atomic structure of MgFeBO4, Mg0.5 Co0.5 FeBO4 and CoFeBO4: effects of Co substitution. Phys. Status. Solidi. B. 252(10), 2245–2258 (2015). https://doi.org/10.1002/pssb.201552143

    Article  ADS  Google Scholar 

  21. Cui, Z., Bai, K., Wang, X., Li, E., Zheng, J.: Electronic, magnetism, and optical properties of transition metals adsorbed g-GaN. Physica E. 118, 113871 (2020). https://doi.org/10.1016/j.physe.2019.113871

    Article  Google Scholar 

  22. Manjunatha, M., Reddy, G.S., Mallikarjunaiah, K.J., Damle, R., Ramesh, K.P.: Determination of phase composition of cobalt nanoparticles using 59Co internal field nuclear magnetic resonance. J. Supercond. Nov. Magn. 32(10), 3201–3209 (2019). https://doi.org/10.1007/s10948-019-5083-7

    Article  Google Scholar 

  23. Andreev, A.S., Lacaillerie, J.B.E., Lapina, O.B., Gerashenko, A.: Thermal stability and hcp–fcc allotropic transformation in supported Co metal catalysts probed near operando by ferromagnetic NMR. Phys. Chem. Chem. Phys. 17(22), 14598–14604 (2015). https://doi.org/10.1039/C4CP05327C

    Article  Google Scholar 

  24. Fujihisa, H., Takemura, K.: Equation of state of cobalt up to 79GPa. Phys. Rev. B. 54(1), 5–7 (1996). https://doi.org/10.1103/PhysRevB.54.5

    Article  ADS  Google Scholar 

  25. Giber, J., Drube, R., Dose, V.: Critical point energies in hcp and fcc cobalt from appearance potential spectra. Appl. Phys. A. 52(2), 167–170 (1991). https://doi.org/10.1007/BF00323736

    Article  ADS  Google Scholar 

  26. Paduani, C.: Band structure and Fermi surfaces of alternate structural phases of Co and Rh. Solid State Commun. 152(1), 28–33 (2012). https://doi.org/10.1016/j.ssc.2011.10.015

    Article  ADS  Google Scholar 

  27. Min, B. I., Oguchi, T., Freeman,A. J.: Structural, electronic, and magnetic properties of Co: evidence for magnetism-stabilizing structure. Phys. Rev. B. 33 (11), 7852–7854(1986). https://doi.org/10.1103/PhysRevB.33.7852

  28. Moruzzi, V.L., Marcus, P.M., Schwarz, K., Mohn, P.: Ferromagnetic phases of bcc and fcc Fe, Co, and Ni. Phys. Rev. B. 34(3), 1784–1791 (1986). https://doi.org/10.1103/PhysRevB.34.1784

    Article  ADS  Google Scholar 

  29. Zener, C.: In: Rudman, R.I., Stringer, P.S., Jaffee, J. (eds.) Phase stability in metals and alloys, pp. 31–33. McGraw-Hill, New York (1967)

    Google Scholar 

  30. Uhl, M., Kübler, J.: Exchange-coupled spin-fluctuation theory: application to Fe, Co, and Ni. Phys. Rev. Lett. 77(2), 334–337 (1996)

    Article  ADS  Google Scholar 

  31. Söderlind, P., Ahuja, R., Eriksson, O., Wills, J.M., Johansson, B., et al.: Phys. Rev. B. 50(9), 5918–5927 (1994). https://doi.org/10.1103/PhysRevB.50.5918

    Article  ADS  Google Scholar 

  32. Yoo, C.S., Söderlind, P., Cynn, H.: The phase diagram of cobalt at high pressure and temperature: the stability of γ (fcc)-cobalt and new ε′ (dhcp)-cobalt. J. Phys. Condens. Matter. 10(20), L311–L318 (1998). https://doi.org/10.1088/0953-8984/10/20/001

    Article  Google Scholar 

  33. Wells, A.F.: Structural inorganic chemistry, pp. 346–351. Oxford Univ. Press, New York (1991)

    Google Scholar 

  34. Belash, I.T., Malyshev, V.Y., Ponomarev, B.K., Ponyatovskii, E.G., Sokolov, A.Y.: Magnetism of cobalt hydrides. Sov. Phys. Solid State. 28, 741 (1986)

    Google Scholar 

  35. Ponyatovsky, E.G., Antonv, V.E., Belash, I.T.: In: Prokhorov, A.M., Prokhorov, A.S. (eds.) Problems in solid state physics, p. 109. Mir, Moscow (1984)

    Google Scholar 

  36. Fedotov, V.K., Antonov, V.E., Antonova, T.E., Bokhenkov, E.L., Dorner, B., Grosse, G., Wagner, F.E.: Atomic ordering in the hcp cobalt hydrides and deuterides. J. Alloys Compd. 291(1–2), 1–7 (1999). https://doi.org/10.1016/S0925-8388(99)00229-7

    Article  Google Scholar 

  37. Fukai, Y., Yokota, S., Yanagawa, J.: The phase diagram and superabundant vacancy formation in Co–H alloys. J. Alloys Compd. 407(1–2), 16–24 (2006). https://doi.org/10.1016/j.jallcom.2005.06.016

    Article  Google Scholar 

  38. Antonov, V.E., Antonova, T.E., Fedotov, V.K., Hansen, T., Kolesnikov, A.I., Ivanov, A.S.: Neutron scattering studies of γ-CoH. J. Alloys Compd. 404-406, 73–76 (2005). https://doi.org/10.1016/j.jallcom.2004.11.107

    Article  Google Scholar 

  39. Ishimatsu, N., Shichijo, T., Matsushima, Y., Maruyama, H., Matsuura, Y., Tsumuraya, T., Shishidou, T., Oguchi, T., Kawamura, N., Mizumaki, M., Matsuoka, T., Takemura, K.: Hydrogen-induced modification of the electronic structure and magnetic states in Fe, Co, and Ni monohydrides. Phys. Rev. B. 86(10), 104430 (2012). https://doi.org/10.1103/PhysRevB.86.104430

    Article  ADS  Google Scholar 

  40. Kuzovnikov, M.A., Tkacz, M.: High pressure studies of cobalt–hydrogen system by X-ray diffraction. J. Alloys Compd. 650, 884–886 (2015). https://doi.org/10.1016/j.jallcom.2015.08.062

    Article  Google Scholar 

  41. Wang, L., Duan, D., Yu, H., Xie, H., Huang, X., Tian, F., Liu, B., Cui, T.: High-pressure formation of cobalt polyhydrides: a first-principle study. Inorg. Chem. 57(1), 181–186 (2018). https://doi.org/10.1021/acs.inorgchem.7b02371

    Article  Google Scholar 

  42. Antonov, V.E., Belash, I.T., Malyshev, V.Y., Ponyatovskii, E.G.: New high-pressure phase in the cobalt-hydrogen system. Dokl. Akad. Nauk SSSR. 272, 1152–1147 (1983)

    Google Scholar 

  43. Antonov, V.E., Antonova, T.E., Baier, M., Grosse, G., Wagner, F.E.: On the isomorphous phase transformation in the solid f.c.c. solutions ConH at high pressures. J. Alloys. Compd. 239(2), 198–202 (1996). https://doi.org/10.1016/0925-8388(96)02188-3

    Article  Google Scholar 

  44. Riane, R., Abdiche, A., Hamerelaine, L., Guemmou, M., Ouaini, N., Matar, S.F.: Ab initio investigations of the electronic and magnetic structures of CoH and CoH2. Solid State Sci. 22(8), 77–81 (2013). https://doi.org/10.1016/j.solidstatesciences.2013.05.010

    Article  ADS  Google Scholar 

  45. Gordon, I.E., Roy, R.J., Bernath, P.F.: Near infrared emission spectra of CoH and CoD. J. Mol. Spectrosc. 237, 11(1), –18 (2006). Get. https://doi.org/10.1016/j.jms.2006.02.011

  46. Uribe, E.A., Daza, M.C., Villaveces, J.L.: CoHn (n = 1–3): classical and non-classical cobalt polyhydride. Chem. Phys. Lett. 490(4–6), 143–147 (2010). https://doi.org/10.1016/j.cplett.2010.03.049

    Article  ADS  Google Scholar 

  47. Belova, M.P., Isaevab, E.I., Vekilova, Y.K.: Ab initio lattice dynamics of CoH and NiH. J. Alloys Compd. 509(2), 857–859 (2011). https://doi.org/10.1016/j.jallcom.2010.09.164

    Article  Google Scholar 

  48. Bidai, K., Ameri, M., Ameri, I., Bensaid, D., Slamani, A., Zaoui, A., Aldouri, Y.: Structural, mechanical and thermodynamic properties under pressure effect of rubidium telluride: first principal calculation. Arch. Metall. Mater. 62(2), 865–871 (2017). https://doi.org/10.1515/amm-2017-0127

    Article  Google Scholar 

  49. Tracy, C.L., Park, S., Rittman, D.R., Zinkle, S.J., Bei, H., Lang, M., Ewing, R.C., Mao, W.L.: High-pressure synthesis of a hexagonal close-packed phase of the high entropy alloy CrMnFeCoNi. Nature communication. 8, 15634 (2017). https://doi.org/10.1038/ncomms15634

    Article  ADS  Google Scholar 

  50. Tambe, M.J., Bonini, N., Marzari, N.: Bulk aluminum at high pressure: a first-principles study. Phys. Rev. B. 77(17), 172102 (2008). https://doi.org/10.1103/PhysRevB.77.172102

    Article  ADS  Google Scholar 

  51. Jafari, M., Jahandoost, A., Vaezzadeh, M., Zarifi, N.: Effect of pressure on the electronic structure of hcp titanium. Condens. Matter Phys. 14(2), 1–7 (2011). https://doi.org/10.5488/CMP.14.23601

    Article  Google Scholar 

  52. Lizárraga, R., Pan, F., Bergqvist, L., Holmström, E., Gercsi, Z., Vitos, L.: First principles theory of the hcp-fcc phase transition in cobalt. Sci. Rep. 7, 3778 (2017). https://doi.org/10.1038/s41598-017-03877-5

    Article  ADS  Google Scholar 

  53. Dreizler, R.M., Gross, E.K.U.: Density-Functional Theory. Springer, New York (1995)

    Google Scholar 

  54. Schwarz, K., Blaha, P.: Solid-state calculations using WIEN2K. Comput. Mater. Sci. 28(2), 259–273 (2003). https://doi.org/10.1016/S0927-0256(03)00112-5

    Article  Google Scholar 

  55. Schwarz, K.: DFT calculations of solids with LAPW and WIEN2k. J. Solid State Chem. 176(2), 319–328 (2003). https://doi.org/10.1016/S0022-4596(03)00213-5

    Article  ADS  Google Scholar 

  56. Savrasov, S.Y., Savrasov, D.: Full-potential linear-muffin-tin-orbital method for calculating total energies and forces. Phys. Rev. B. 46(19), 12181–12195 (1992). https://doi.org/10.1103/PhysRevB.46.12196

    Article  ADS  Google Scholar 

  57. Savrasov, S.Y.: Linear-response theory and lattice dynamics: a muffin-tin-orbital approach. Phys. Rev. B. 54(23), 16470–16486 (1996). https://doi.org/10.1103/PhysRevB.54.16470

    Article  ADS  Google Scholar 

  58. Perdew, J.P., Wang, Y.: Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B. 46(20), 12947–12954 (1992). https://doi.org/10.1103/PhysRevB.46.12947

    Article  ADS  Google Scholar 

  59. Jamal M.: Hex-elastic, http://ww w.wien2k.at/reg. user/unsupported/cubic-elast / (2012)

  60. Stadler, R., Wolf, W., Podloucky, R., Kresse, G., Furthmller, J., Hafner, J.: Ab initio calculations of the cohesive, elastic, and dynamical properties of CoSi2 by pseudopotential and all-electron techniques. Phys. Rev. B. 54(3), 1729–1734 (1996). https://doi.org/10.1103/PhysRevB.54.1729

    Article  ADS  Google Scholar 

  61. Murnaghan, F.B.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30(9), 244–247 (1944). https://doi.org/10.1073/pnas.30.9.244

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Neumann, G.S., Stixrude, L., Cohen, R.E.: First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high-pressure. Phys. Rev. B. 60(2), 791–799 (1999). https://doi.org/10.1103/PhysRevB.60.791

    Article  ADS  Google Scholar 

  63. Beck, P.A.: Electronic structure and alloy chemistry of the transition elements. Interscience Publishers (Wiley Eds.), New York.140 (356), 653 (1963)

  64. Westbrook, J. H.: Intermetallic compounds, Huntington, N.Y.:R.E. Krieger Pub. Co. (1977)

  65. Wang, M., Binns, J., Donnely, M.E., Alvarez, M.P., Simpson, P.D., Howie, R.T.: High pressure synthesis and stability of cobalt hydrides. J. Chem. Phys. 148(14), 144310 (2018). https://doi.org/10.1063/1.5026535

    Article  ADS  Google Scholar 

  66. Schober, R., Dederichs, H.: Elastic, piezoelectric, pyroelectric, piezooptic, electrooptic constants and nonlinear dielectric susceptibilities of crystals, Hellwege KH, Hellwege AW (Eds.), Landolt-Börnstein, New Series III, Vol. 11a (1979)

  67. Merabet, N., Riane, R., Abdiche, A.: First-principle calculation of structural, mechanical, electronic and magnetic properties of cobalt sub hydrides Co2H and Co3H. J. Material. Sci. Eng. 7(3), (2018). https://doi.org/10.4172/2169-0022.1000463

  68. Myers, H.P., Sucksmith, W.: The spontaneous magnetization of cobalt. Proc. R. Soc. 207(1091), 427–428 (1951). https://doi.org/10.1098/rspa.1951.0132

    Article  ADS  Google Scholar 

  69. Born, M., Huang, K.: Dynamical theory of crystal lattices. Oxford Classic Texts in the Physical Sciences (Clarendon, Oxford, 1956)

  70. Mouhat, F., Coudert, F.X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B. 90(22), 224104 (2014). https://doi.org/10.1103/PhysRevB.90.224104

    Article  ADS  Google Scholar 

  71. Brazhkin, V.V.: High-pressure synthesized materials: treasures and hints. High-Pressure Res. 27(3), 333–351 (2007). https://doi.org/10.1080/08957950701546956

    Article  ADS  Google Scholar 

  72. Reuss, A., Angew, Z.: Computation of the yield point of mixed crystals due to hiring for single crystals. Math. Phys. 9, 49–58 (1929)

    Google Scholar 

  73. Gilman, J.J.: Electronic basis of the strength of materials. Cambridge University Press. (2003)

  74. Hill, R.: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. 65(5), 349–354 (1952). https://doi.org/10.1088/0370-1298/65/5/307/pdf

    Article  ADS  Google Scholar 

  75. Westbrook, J.H., Fleischeir, R.L.: Intermetallic Compounds: Principle and Practice, Volume I: Principles, John Wiley and Sons Ltd, 195–210 (1995)

  76. Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45(367), 823–843 (1954). https://doi.org/10.1080/14786440808520496

    Article  Google Scholar 

  77. Mayer, B., Anton, H., Bott, E., Methfesse, M., Sticht, J., Harris, J., Schmidt, P.C.: Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics. 11(1), 23–32 (2003). https://doi.org/10.1016/S0966-9795(02)00127-9

    Article  Google Scholar 

  78. Frantsevich, I. N., Voronov, F.F., Bokuta, S.A.: Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, Frantsevich, I.N., Ed.; NaukovaDumka: Kiev, Ukraine, 60–180(1983)

Download references

Funding

The author S. Bin Omran acknowledges the financial support of Research Supporting project number (RSP-2020-82), at King Saud University, Riyadh, Saudi Arabia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdiche.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merabet, N., Abdiche, A., Riane, R. et al. The Implications of Pressure on Electronic, Magnetic, Mechanical, and Elastic Properties of Cobalt and Cobalt Hydride: DFT Calculation. J Supercond Nov Magn 33, 3451–3461 (2020). https://doi.org/10.1007/s10948-020-05575-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05575-2

Keywords

Navigation