Skip to main content
Log in

Numerical Approximation for Fractional Diffusion Equation Forced by a Tempered Fractional Gaussian Noise

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper discusses the fractional diffusion equation forced by a tempered fractional Gaussian noise. The fractional diffusion equation governs the probability density function of the subordinated killed Brownian motion. The tempered fractional Gaussian noise plays the role of fluctuating external source with the property of localization. We first establish the regularity of the infinite dimensional stochastic integration of the tempered fractional Brownian motion and then build the regularity of the mild solution of the fractional stochastic diffusion equation. The spectral Galerkin method is used for space approximation; after that the system is transformed into an equivalent form having better regularity than the original one in time. Then we use the semi-implicit Euler scheme to discretize the time derivative. In terms of the temporal-spatial error splitting technique, we obtain the error estimates of the fully discrete scheme in the sense of mean-squared \(L^2\)-norm. Extensive numerical experiments confirm the theoretical estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blömker, D., Jentzen, A.: Galerkin approximations for the stochastic Burgers equation. SIAM J. Numer. Anal. 51(1), 694–715 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439(7075), 462–465 (2006)

    Article  Google Scholar 

  3. Chen, G.G., Duan, J.Q., Zhang, J.: Approximating dynamics of a singularly perturbed stochastic wave equation with a random dynamical boundary condition. SIAM J. Math. Anal. 45(5), 2790–2814 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y., Wang, X.D., Deng, W.H.: Tempered fractional Langevin-Brownian motion with inverse \(\beta \)-stable subordinator. J. Phys. A Math. Theor. 51(49), 495001 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Deng, W.H., Li, B.Y., Tian, W.Y., Zhang, P.W.: Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul. 16(1), 125–149 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng, W.H., Hou, R., Wang, W.L., Xu, P.B.: Modeling Anomalous Diffusion: From Statistics to Mathematics. World Scientific, Singapore (2020)

    Book  MATH  Google Scholar 

  7. Dieker, T.: Simulation of fractional Brownian motion. Master’s Thesis, University of Twente (2002)

  8. Ditlevsen, P.D.: Observation of \(\alpha \)-stable noise induced millennial climate changes from an ice-core record. Geophys. Res. Lett. 26(10), 1441–1444 (1999)

    Google Scholar 

  9. Du, Q., Zhang, T.Y.: Numerical approximation of some linear stochastic partial differential equations driven by special additive noises. SIAM J. Numer. Anal. 40(4), 1421–1445 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dybiec, B., Kleczkowski, A., Gilligan, C.A.: Modelling control of epidemics spreading by long-range interactions. J. R. Soc. Interface 6(39), 941–950 (2009)

    Article  Google Scholar 

  11. Hu, Y.Z., Peng, S.G.: Backward stochastic differential equation driven by fractional Brownian motion. SIAM J. Control Optim. 48(3), 1675–1700 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, Y., Oberman, A.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52(6), 3056–3084 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kamrani, M., Hosseini, S.M.: The role of coefficients of a general SPDE on the stability and convergence of a finite difference method. J. Comput. Appl. Math. 234(5), 1426–1434 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kloeden, P.E., Lorenz, T.: Mean-square random dynamical systems. J. Differ. Equ. 253(5), 1422–1438 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kneller, G.R., Hinsen, K.: Fractional Brownian dynamics in proteins. J. Chem. Phys. 121(20), 10278–10283 (2004)

    Article  Google Scholar 

  16. Kovács, M., Printems, J.: Strong order of convergence of a fully discrete approximation of a linear stochastic Volterra type evolution equation. Math. Comput. 83(289), 2325–2346 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Laptev, A.: Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. J. Funct. Anal. 151(2), 531–545 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, D.F., Zhang, J.W., Zhang, Z.M.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations. J. Sci. Comput. 76(2), 848–866 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, P., Yau, S.T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88(3), 309–318 (1983)

    Article  MATH  Google Scholar 

  20. Li, Y.J., Wang, Y.J., Deng, W.H.: Galerkin finite element approximations for stochastic space-time fractional wave equations. SIAM J. Numer. Anal. 55(6), 3173–3202 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Z.H., Qiao, Z.H.: Strong approximation of monotone stochastic partial differential equations driven by white noise. IMA J. Numer. Anal. 40(2), 1074–1093 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meerschaert, M.M., Sabzikar, F.: Tempered fractional Brownian motion. Stat. Probab. Lett. 83(10), 2269–2275 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meerschaert, M.M., Sabzikar, F.: Stochastic integration for tempered fractional Brownian motion. Stoch. Process. Appl. 124(7), 2363–2387 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Song, R., Vondracek, Z.: Potential theory of subordinate killed Brownian motion in a domain. Probab. Theory Relat. Fields. 125(4), 578–592 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Szymanski, J., Weiss, M.: Elucidating the origin of anomalous diffusion in crowded fluids. Phys. Rev. Lett. 103, 038102 (2009)

    Article  Google Scholar 

  27. Tian, X.C., Du, Q., Gunzburger, M.: Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains. Adv. Comput. Math. 42(6), 1363–1380 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, Q.W., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 52(1), 405–423 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yan, Y.B.: Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43(4), 1363–1384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yoo, H.: Semi-discretization of stochastic partial differential equations on \(\mathbb{R}^1\) by a finite-difference method. Math. Comput. 69(230), 653–666 (2000)

    MATH  Google Scholar 

  31. Yang, L., Zhang, Y.Z.: Convergence of the spectral Galerkin method for the stochastic reaction-diffusion-advection equation. J. Math. Anal. Appl. 446(2), 1230–1254 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, Z.J., Deng, W.H., Karniadakis, G.E.: A Riesz basis Galerkin method for the tempered fractional Laplacian. SIAM J. Numer. Anal. 56(5), 3010–3039 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Z.J., Deng, W.H., Fan, H.: Finite difference schemes for the tempered fractional Laplacian. Numer. Math. Theory Methods Appl. 12(2), 492–516 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11671182, and the Fundamental Research Funds for the Central Universities under Grants No. lzujbky-2018-ot03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of the Uniqueness for the Solution of Eq. (3.2)

Let \(u(t,\omega )\) and \(\hat{u}(t,\omega )\) be the solutions with initial values \(u(0,\omega )\) and \(\hat{u}(0,\omega )\), respectively, where \(\omega \) denotes the path of stochastic process. By using Eq. (3.2), we have

$$\begin{aligned} \mathrm {E}\left[ \left\| u(t)-\hat{u}(t)\right\| ^2\right]= & {} \mathrm {E}\left[ \left\| S(t)u(0)-S(t)\hat{u}(0) +\int ^t_0S(t-s)f(u(s))\mathrm {d}s-\int ^t_0S(t-s)f(\hat{u}(s))\mathrm {d}s\right\| ^2\right] \\\le & {} 2\mathrm {E}\left[ \left\| u(0)-\hat{u}(0)\right\| ^2\right] +C\int ^t_0\mathrm {E}\left[ \left\| u(s)-\hat{u}(s)\right\| ^2\right] \mathrm {d}s. \end{aligned}$$

The Grönwall inequality leads to

$$\begin{aligned} \mathrm {E}\left[ \left\| u(t)-\hat{u}(t)\right\| ^2\right] \le 2\mathrm {E}\left[ \left\| u(0)-\hat{u}(0)\right\| ^2\right] \exp (Ct). \end{aligned}$$

Taking \(u(0)=\hat{u}(0)\) leads to

$$\begin{aligned} \mathrm {E}\left[ \left\| u(t)-\hat{u}(t)\right\| ^2\right] =0, \quad t\in [0,T]. \end{aligned}$$

From the continuity of \(t\rightarrow \left\| u(t)-\hat{u}(t)\right\| ^2\), we get

$$\begin{aligned} P\left[ \left\| u(t,\omega )-\hat{u}(t,\omega )\right\| ^2=0, \quad t\in [0,T]\right] =1, \end{aligned}$$

where P denotes the probability. The uniqueness has been proved.

Proof of the Existence for the Solution of Eq. (3.2)

Let \(Y^{(0)}_t=u(0)\), \(Y^{(k)}_t=Y^{(k)}_t(\omega )\), and

$$\begin{aligned} Y^{(k+1)}_t=S(t)u(0)+\int ^t_0S(t-s)f(Y^{(k)}_t)\mathrm {d}s+\int ^t_0S(t-s)\mathrm {d}B_{H,\mu }(s). \end{aligned}$$

Assumption 1 implies

$$\begin{aligned} \mathrm {E}\left[ \left\| Y^{(k+1)}_t-Y^{(k)}_t\right\| ^2\right]= & {} \mathrm {E}\left[ \left\| \int ^t_0S(t-s)f(Y^{(k)}_s)\mathrm {d}s-\int ^t_0S(t-s)f(Y^{(k-1)}_s)\mathrm {d}s\right\| ^2\right] \nonumber \\\le & {} Ct \int ^t_0\mathrm {E}\left[ \left\| Y^{(k)}_s-Y^{(k-1)}_s\right\| ^2\right] \mathrm {d}s, \end{aligned}$$
(B.1)

where \(k\ge 1\) and \(t\le T\). Let

$$\begin{aligned} \theta = \left\{ \begin{array}{ll} 2H, &{}\ \rho >\frac{1}{2}, \\ \frac{\gamma }{2\alpha }, &{}\ 0<\rho \le \frac{1}{2}. \end{array} \right. \end{aligned}$$

Then

$$\begin{aligned} \mathrm {E}\left[ \left\| Y^{(1)}_t-Y^{(0)}_t\right\| ^2\right]\le & {} C\mathrm {E}\left[ \left\| S(t)u(0)-u(0)\right\| ^2\right] +C\mathrm {E}\left[ \left\| \int ^t_0S(t-s)f\left( u(0)\right) \mathrm {d}s\right\| ^2\right] +Ct^{\theta }\\\le & {} Ct^2\left( 1+\mathrm {E}\left[ \left\| u(0)\right\| ^2\right] \right) +Ct^{\theta }\\\le & {} Ct^{\min \{2,\theta \}}, \end{aligned}$$

where C depends on H, \(\alpha \), and \(\gamma \). So by induction starting from Eq. (B.1), we obtain

$$\begin{aligned} \mathrm {E}\left[ \left\| Y^{(k+1)}_t-Y^{(k)}_t\right\| ^2\right] \le \frac{C^{k+1}t^{2k+\min \{2,\theta \}}}{k!},\quad k\ge 0, \ t\in [0,T]. \end{aligned}$$
(B.2)

Let \(m>n\ge 0\). Using Eq. (B.2), we have

$$\begin{aligned} \left\| Y^{(m)}_t-Y^{(n)}_t\right\| _{L^2(D,U)}= & {} \left\| \sum ^{m-1}_{k=n}Y^{(k+1)}_t-Y^{(k)}_t\right\| _{L^2(D,U)}\\\le & {} \sum ^{m-1}_{k=n}\left\| Y^{(k+1)}_t-Y^{(k)}_t\right\| _{L^2(D,U)}\\\le & {} \sum ^{m-1}_{k=n}\left( \frac{C^{k+1}T^{2k+\min \{2,\theta \}}}{k!}\right) ^{\frac{1}{2}}. \end{aligned}$$

As \(m,n\rightarrow \infty \), then \(\left\| Y^{(m)}_t-Y^{(n)}_t\right\| _{L^2(D,U)}=0\). The above deduction shows that \(\left\{ Y^{(k)}_t\right\} ^\infty _{k=0}\) is a Cauchy sequence in space \(L^2(D,U)\). Define

$$\begin{aligned} u(t):=\lim _{n\rightarrow \infty }Y^{(n)}_t. \end{aligned}$$

Then u(t) satisfies Eq. (3.2).

Description for the Simulation of Tempered Fractional Brownian Motion

In this paper, the Ckolesky method [7] is used to simulate tfBm. Suppose \(0\le t_1\le \dots \le t_{m}\le \dots \le t_{M}=T(m=1,2,\dots , M-1)\) and the sizes of the mesh \(\varDelta t=t_{m+1}-t_{m}\). Let’s consider the following vector

$$\begin{aligned} Z=\left( \beta _{H,\mu }(t_1),\beta _{H,\mu }(t_2)-\beta _{H,\mu }(t_1),\beta _{H,\mu }(t_3)- \beta _{H,\mu }(t_2),\dots ,\beta _{H,\mu }(t_{M-1})-\beta _{H,\mu }(t_M)\right) . \end{aligned}$$

The probability distribution of the vector Z is normal with mean 0 and the covariance matrix \(\varSigma \). Let \(\varSigma _{i,j}\) be the element of row i, column j of matrix \(\varSigma \). By using Eq. (2.1), we have

$$\begin{aligned} \varSigma _{i,j}= & {} \mathrm {E}\left[ \left( \beta _{H,\mu }(t_i)-\beta _{H,\mu }(t_{i-1})\right) \left( \beta _{H,\mu }(t_j)-\beta _{H,\mu }(t_{j-1})\right) \right] \\= & {} \mathrm {E}\left[ \beta _{H,\mu }(t_i)\beta _{H,\mu }(t_j)+\beta _{H,\mu }(t_{i-1})\beta _{H,\mu }(t_{j-1}) -\beta _{H,\mu }(t_i)\beta _{H,\mu }(t_{j-1})-\beta _{H,\mu }(t_j)\beta _{H,\mu }(t_{i-1})\right] \\= & {} \frac{1}{2}\left[ C^2_{(i-j+1)\varDelta t}|(i-j+1)\varDelta t|^{2H}+C^2_{(i-j-1)\varDelta t}|(i-j-1)\varDelta t|^{2H}-2C^2_{(i-j)\varDelta t}|(i-j)\varDelta t|^{2H}\right] . \end{aligned}$$

When \(\varSigma \) is a symmetric positive matrix, the covariance matrix \(\varSigma \) can be written as \(L(M)L(M)'\), where the matrix L(M) is lower triangular matrix and the matrix \(L(M)'\) is the transpose of L(M). Let \(V=(V_1,V_2,\dots ,V_M)\). The elements of the vector V are a sequence of independent and identically distributed standard normal random variables. Because \(Z=L(M)V\), then Z can be simulated. Let \(l_{i,j}\) be the element of row i, column j of matrix L(M). That is,

$$\begin{aligned} \varSigma _{i,j}=\sum ^j_{k=1}l_{i,k}l_{j,k}, \quad j\le i. \end{aligned}$$

As \(i=j=1\), we have \(l^2_{1,1}=\varSigma _{1,1}\). The \(l_{i,j}\) satisfies

$$\begin{aligned} l_{i+1,1}= & {} \frac{\varSigma _{i+1,1}}{l_{1,1}},\\ l^2_{i+1,i+1}= & {} \varSigma _{i+1,i+1}-\sum ^{i}_{k=1}l^2_{i+1,k},\\ l_{i+1,j}= & {} \frac{1}{l_{j,j}}\left( \varSigma _{i+1,j}-\sum ^{j-1}_{k=1}l_{i+1,k}l_{j,k}\right) ,\quad 1<j\le i. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Deng, W. Numerical Approximation for Fractional Diffusion Equation Forced by a Tempered Fractional Gaussian Noise. J Sci Comput 84, 21 (2020). https://doi.org/10.1007/s10915-020-01271-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01271-4

Keywords

Navigation