Skip to main content
Log in

Antioxidant Defense in the Hepatopancreas and Nerve Ganglia of the Mollusk Lymnaea stagnalis after Acute Experimental Hyperglycemia

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The state of the antioxidative defense system in the hepatopancreas and central nerve ganglia was investigated in the mollusk Lymnaea stagnalis in the normal conditions and one day after acute experimental hyperglycemia induced by a 2-h incubation in 100 mM glucose solution. It was established that hyperglycemic exposure caused a 1.6- and 1.5-fold increase in the reduced glutathione (GSH) level and superoxide dismutase (SOD) activity, respectively, as observed against the background of a 1.3-fold decrease in the total protein level. At the same time, activity of Se-dependent glutathione peroxidase (Se-GP) and the level of TBA reactive substances (TBARS) remained intact. Hepatopancreatic tissues were characterized by a 1.3-fold decrease in TBARS, as detected against the background of a 1.1-fold increase in the total protein level, while other antioxidative defense components (SOD, GSH, Se-GP) remained invariable. It is assumed that the more developed antioxidative system in central ganglia is essential for providing sustained functioning of nerve cells in L. stagnalis under dramatic disturbances of glucose homeostasis in the internal environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Tups, A., Benzler, J., Sergi, D., Ladyman, S.R., and Williams, L.M., Central regulation of glucose homeostasis, Comp. Physiol. C, 2017, vol. 7, pp. 741–764.

  2. Routh, V.H., Glucose sensing neurons in the ventromedial hypothalamus, Sensors, 2010, vol. 10, pp. 9002–9025.

  3. Gusev, E.I. and Skvortsova, V.I., Ishemiya golovnogo mozga (Brain Ischemia), Moscow, 2001.

  4. Levin, B.E., Neuronal glucose sensing: still a physiological orphan? Cell Metabolism, 2007, vol. 6, pp. 252–254.

  5. Veldhuijzen, J.P., Effects of different kinds of food, starvation and restart of feeding on the haemolymph-glucose of the pond snail Lymnaea stagnalis, Neth. J. Zool., 1974, vol. 25, pp. 89–102.

  6. Karanova, M.V., Seasonal variation in the content of free reducing sugars in body fluids of freshwater mollusk Lymnaea stagnalis, Biol. Bull., 2006, vol. 33, pp. 382–386.

  7. Shevelkin, A.V., Facilitation of defense reactions during the consumption of food in snails: the participation of glucose and gastrin/cholecystokinin-like peptide, Neurosci. Behav. Physiol., 1994, vol. 24, pp. 115–124.

  8. Kuznetsova, L.A., Plesneva, S.A., Chistyakova, O.V., Shpakov, A.O., Bondareva, V.M., and Pertseva, M.N., Streptozotocin model of diabetes mellitus in the mollusc Anodonta cygnea: functional state of the adenylyl cyclase mechanisms of action of insulin superfamily peptides and their effect on carbohydrate metabolism enzymes, J. Evol. Biochem. Physiol., 2007, vol. 43(6), pp. 460–467.

  9. Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., and Pertseva, M.N., Variations in functional activity of the hormone-sensitive adenylate cyclase system in tissues of gastropod mollusks with streptozotocin-induced diabetes, Bull. Exp. Biol. Med., 2008, vol. 146(4), pp. 424–428.

  10. Finkel, T., Oxygen radicals and signalling, Curr. Biol., 1998, vol. 10, pp. 248–253.

  11. Kostyuk, V.A. and Potapovich, A.I., Superoxide-driven oxidation of quercetin and a simple assay for determination of superoxide dismutase, Biochem. Int., 1989, vol. 19, pp. 1117–1124.

  12. Flohe, L. and Cunzler, W.A., Assays of glutathione peroxidase, Methods Enzymol., 1984, vol. 105, pp. 114–126.

  13. Habeeb, A.F., Reaction of protein sulfhydryl groups with Ellman’s reagent, Methods Enzymol., 1972, vol. 25, pp. 457–464.

  14. Kostyuk, V.A. and Potapovich, A.I., Determination of lipid peroxidation products using thiobarbituric acid in anaerobic states, Vopr. Med. Khim., 1987, vol. 33, pp. 115–118.

  15. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

  16. Glantz, S., Primer of Biostatistics, NY, McGraw-Hill, Inc., 1994.

  17. Shadenko, V.N. and Sidorov, A.V., Induction of experimental hyperglycemia in mollusc Lymnaea stagnalis after animal’s incubation in high-concentrated glucose solution, J. Belarus. State Univer. Biol., 2019, vol. 1, pp. 79–84.

  18. Van Aardt, W.J., Quantitative aspects of the water balance in Lymnaea stagnalis (L.), Neth. J. Zool., 1967, vol. 18, pp. 253–312.

  19. Smit, A.B., Vreugenhil, E., Ebberink, R.H.M., Geraerts, W.P.M., Klootwijk, J., and Joosse, J., Growth controlling molluscan neurons produce the precursor of an insulin-related peptide, Nature, 1988, vol. 331, pp. 535–538.

  20. Geraerts, W.P.M., Control of growth by the neurosecretory hormone of the light green cells in the freshwater snail Lymnaea stagnalis, Gen. Comp. Endocrinol., 1976, vol. 29, pp. 61–67.

  21. Kits, K.S., Bobeldijk, R.C., Crest, M., and Lod-der J.C., Glucose-induced excitation in molluscan central neurons producing insulin-related peptides, Pflügers Arch., 1991, vol. 417, pp. 597–604.

  22. Floyd, P.D., Li, L., Rubakhin, S.S., Sweedler, J.V., Horn, C.C., Kupfermann, I., Alexeeva, V., Y., Ellis, T.A., Dembrow, N.C., Weiss, K.R., and Vilim, F.S., Insulin prohormone processing, distribution, and relation to metabolism in Aplysia californica, J. Neurosci., 1999, vol. 19, pp. 7732–7741.

  23. Jonas, E.A., Knox, R.J., Kaczmarek, L.K., Schwartz, J.H., and Salomon, D.H., Insulin receptor in Aplysia neurons: characterization, molecular cloning and modulation of ion currents, J. Neurosci., 1996, vol. 16, pp. 1645–1658.

  24. Murakami, J., Okada, R., Sadamoto, H., Kobayashi, S., Mita, K., Sakamoto, Y., Yamagishi, M., Hatakeyama, D., Otsuka, E., Okuta, A., Sunada, H., Takigami, S., Sakakibara, M., Fujito, Y., Awaji, M., Moriyama, S., Lukowiak, K., and Ito, E., Involvement of insulin-like peptide in long-term synaptic plasticity and long-term memory of the pond snail Lymnaea stagnalis, J. Neurosci., 2013, vol. 33, pp. 371–383.

  25. Bailey, C.H., Kandel, E.R., and Harris, K.M., Structural components of synaptic plasticity and memory consolidation, Cold Spring Harb. Perspect. Biol., 2015, vol. 7, a021758.

  26. Dickson, B.J., Wiring the brain with insulin, Science, 2003, vol. 300(5618), pp. 440–441.

  27. Kits, K.S., de Vries, N.J., and Ebberink, R.H.M., Molluscan insulin-related peptide promotes neurite outgrowth in dissociated neuron cultures, Neurosci. Lett., 1990, vol. 109, pp. 253–259.

  28. Hemminga, M.A., Maaskant, J.J., van der Plas, J., and Gabbott, P.A., The hyperglycemic factor of the CNS of the freshwater snail Lymnaea stagnalis: interaction with glucose stimulation of glycogen synthesis and evidence for its release during anaerobiosis, Gen. Comp. Endocrinol., 1985, vol. 59, pp. 301–307.

  29. Gostyukhina, O.L. and Andreenko, T.I., Low molecular weight components of antioxidative defense system in the Black Sea mollusk Anadara kagoshimensis Brugùiere, J. Evol. Biochem. Physiol., 2015, vol. 51(4), pp. 271–278.

  30. Sidorov, A.V., Effect of hydrogen peroxide on electrical coupling between identified Lymnaea neurones, Invert. Neurosci., 2012, vol. 12(1), pp. 63–68.

  31. De Fraga, L.S., Da Silva, R.S., Achaval, M., and Zancan, D.M., Carbohydrate metabolism in the central nervous system of the Megalobulimus oblongus snail during anoxia exposure and post-anoxia recovery, J. Exp. Zool. A, Comp. Exp. Biol., 2004, vol. 301, pp. 968–978.

  32. Abdraba, A.M. and Saleuddin, A.S., A putative hyperglycemic factor from the cerebral ganglia of Otala lactea (Mollusca: Pulmonata), J. Comp. Physiol. B, 2000, vol. 170, pp. 219–224.

  33. Alania, M., Dyakonova, V., and Sakharov, D.A., Hyperpolarization by glucose of feeding-related neurons in snail, Acta Biol. Hung., 2004, vol. 55, pp. 195–200.

  34. Sidorov, A.V. and Maslova, G.T., State of antioxidative protection in central nervous ganglia of the mollusc Lymnaea stagnalis at modulation of activity of the NO-ergic system, J. Evol. Biochem. Physiol., 2008, vol. 44(5), pp. 435–441.

Download references

Funding

This work was supported by the State Program of Scientific Research “Convergence 2020” (task no. 3.10.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sidorov.

Ethics declarations

All applicable international, national and institutional principles of handling and using experimental animals for scientific purposes were observed.

This study did not involve human subjects as research objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadenko, V.N., Sidorov, A.V. Antioxidant Defense in the Hepatopancreas and Nerve Ganglia of the Mollusk Lymnaea stagnalis after Acute Experimental Hyperglycemia. J Evol Biochem Phys 56, 235–242 (2020). https://doi.org/10.1134/S0022093020030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093020030060

Keywords:

Navigation