Skip to main content
Log in

Joint optimal pricing and advertising policies in a fashion supply chain under the ODM strategy considering fashion level and goodwill

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

The original design manufacturing (ODM) strategy has become popular in the fashion supply chain field. We consider apparel’s fashion level and advertising effort as important influential factors on goodwill, and present a differential game involving a fashion brand and a supplier. The supplier controls the design improvement effort applied to the apparel and sells it to end consumers through the fashion brand, which controls the advertising effort and retail price. In the case in which the demand for products is affected by goodwill, retail price and promotion, centralised and decentralised differential game models are constructed. The dynamic wholesale price contract is then introduced to solve the external coordination problem. Furthermore, a sensitivity analysis of the related parameters is conducted using the numerical simulation method. It is found that the introduction of the dynamic wholesale price contract increases design investment, promotion effort, and goodwill towards and demand for the products. We also derive the feasible region of wholesale prices in which both members are willing to implement the commitment scenario. The win–win region becomes larger as the effectiveness of design innovation increases, whereas it becomes smaller as price sensitivity increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amrouche N, Martín-Herrán G, Zaccour G (2008) Feedback Stackelberg equilibrium strategies when the private label competes with the national brand. Ann Oper Res 164(1):79–95

    MathSciNet  MATH  Google Scholar 

  • Araman VF, Caldentey R (2009) Dynamic pricing for nonperishable products with demand learning. Oper Res 57(5):1169–1188

    MathSciNet  MATH  Google Scholar 

  • Baiman S, Fischer PE, Rajan MV (2001) Performance measurement and design in supply chains. Manag Sci 47(1):173–188

    MATH  Google Scholar 

  • Bhargava HK, Choudhary V (2001) Information goods and vertical differentiation. J Manag Inf Syst 18(2):89–106

    Google Scholar 

  • Bruce M, Daly L (2011) Adding value: challenges for UK apparel supply chain management–a review. Prod Plan Control 22(3):210–220

    Google Scholar 

  • Brun A, Castelli C (2008) Supply chain strategy in the fashion industry: developing a portfolio model depending on product, retail channel and brand. Int J Prod Econ 116(2):169–181

    Google Scholar 

  • Brun A, Caniato F, Caridi M, Castelli C, Miragliotta G, Ronchi S, Spina G (2008) Logistics and supply chain management in luxury fashion retail: empirical investigation of Italian firms. Int J Prod Econ 114(2):554–570

    Google Scholar 

  • Çakanyıldırım M, Feng Q, Gan X, Sethi SP (2012) Contracting and coordination under asymmetric production cost information. Prod Oper Manag 21(2):345–360

    Google Scholar 

  • Chen L, Plambeck EL (2008) Dynamic inventory management with learning about the demand distribution and substitution probability. Manuf Serv Oper Manag 10(2):236–256

    Google Scholar 

  • Chen S, Lee H, Moinzadeh K (2016) Supply chain coordination with multiple shipments: the optimal inventory subsidizing contracts. Oper Res 64(6):1320–1337

    MathSciNet  MATH  Google Scholar 

  • Chen Q, Xu Q, Wang W (2019a) Optimal policies for the pricing and replenishment of fashion apparel considering the effect of fashion level. Complexity

  • Chen Q, Xu Q, Wu C (2019b) Optimal sharing strategies of idle manufacturing resource considering the effect of supply-demand matching. In: Paper presented at the 2019 international conference on industrial engineering and systems management (IESM)

  • Chenavaz R (2012) Dynamic pricing, product and process innovation. Eur J Oper Res 222(3):553–557

    MathSciNet  MATH  Google Scholar 

  • De Giovanni P (2011) Quality improvement vs. advertising support: which strategy works better for a manufacturer? Eur J Oper Res 208(2):119–130

    MathSciNet  MATH  Google Scholar 

  • Deng S, Yano CA (2016) Designing supply contracts considering profit targets and risk. Prod Oper Manag 25(7):1292–1307

    Google Scholar 

  • Deshpande V, Schwarz LB, Atallah MJ, Blanton M, Frikken KB (2011) Outsourcing manufacturing: secure price-masking mechanisms for purchasing component parts. Prod Oper Manag 20(2):165–180

    Google Scholar 

  • El Ouardighi F (2014) Supply quality management with optimal wholesale price and revenue sharing contracts: a two-stage game approach. Int J Prod Econ 156(10):260–268

    Google Scholar 

  • El Ouardighi F, Kogan K (2013) Dynamic conformance and design quality in a supply chain: an assessment of contracts’ coordinating power. Ann Oper Res 211(1):137–166

    MathSciNet  MATH  Google Scholar 

  • Feng, Q., Lu, L. X. (2010). Design outsourcing in a differentiated product market: the role of bargaining and scope economies. Available at SSRN 2986185

  • Feng Q, Lu LX (2011) Outsourcing design to Asia: ODM practices. Manag Supply Chains Silk Road Strategy Perform Risk 169–184

  • Hamman JR, Loewenstein G, Weber RA (2010) Self-interest through delegation: an additional rationale for the principal-agent relationship. Am Econ Rev 100(4):1826–1846

    Google Scholar 

  • Hua Z, Zhang X, Xu X (2011) Product design strategies in a manufacturer–retailer distribution channel. Omega 39(1):23–32

    Google Scholar 

  • Iyer AV, Schwarz LB, Zenios SA (2005) A principal-agent model for product specification and production. Manag Sci 51(1):106–119

    MATH  Google Scholar 

  • Jørgensen S, Zaccour G (2014) A survey of game-theoretic models of cooperative advertising. Eur J Oper Res 237(1):1–14

    MathSciNet  MATH  Google Scholar 

  • Karray S (2015) Cooperative promotions in the distribution channel. Omega 51(3):49–58

    Google Scholar 

  • Kaya O (2011) Outsourcing vs. in-house production: a comparison of supply chain contracts with effort dependent demand. Omega 39(2):168–178

    Google Scholar 

  • Koulamas C (1992) Quality improvement through product redesign and the learning curve. Omega 20(2):161–168

    Google Scholar 

  • Lai EL-C, Riezman R, Wang P (2009) Outsourcing of innovation. Econ Theor 38(3):485–515

    MathSciNet  MATH  Google Scholar 

  • Lee CH, Rhee B-D, Cheng T (2013) Quality uncertainty and quality-compensation contract for supply chain coordination. Eur J Oper Res 228(3):582–591

    MathSciNet  MATH  Google Scholar 

  • Lin C, Kuei CH, Chai KW (2013) Identifying critical enablers and pathways to high performance supply chain quality management. Int J Oper Prod Manag

  • Liu G, Zhang J, Tang W (2015) Strategic transfer pricing in a marketing–operations interface with quality level and advertising dependent goodwill. Omega 56(10):1–15

    Google Scholar 

  • Lu F, Zhang J, Tang W (2019) Wholesale price contract versus consignment contract in a supply chain considering dynamic advertising. Int Trans Oper Res 26(5):1977–2003

    MathSciNet  Google Scholar 

  • Nerlove M, Arrow KJ (1962) Optimal advertising policy under dynamic conditions. Economica 129–142

  • Niu B, Liu Y, Chen L, Ji P (2018) Outsource to an OEM or an ODM? Profitability and sustainability analysis of a fashion supply chain. J Syst Sci Syst Eng 27(4):399–416

    Google Scholar 

  • Pan X, Li S (2016) Dynamic optimal control of process–product innovation with learning by doing. Eur J Oper Res 248(1):136–145

    MathSciNet  MATH  Google Scholar 

  • Plambeck EL, Taylor TA (2005) Sell the plant? The impact of contract manufacturing on innovation, capacity, and profitability. Manag Sci 51(1):133–150

    Google Scholar 

  • Romano P, Vinelli A (2001) Quality management in a supply chain perspective: strategic and operative choices in a textile-apparel network. Int J Oper Prod Manag 21(4):446–460

    Google Scholar 

  • Sayadi MK, Makui A (2014) Feedback Nash equilibrium for dynamic brand and channel advertising in dual channel supply chain. J Optim Theory Appl 161(3):1012–1021

    MathSciNet  MATH  Google Scholar 

  • Şen A, Zhang AX (2009) Style goods pricing with demand learning. Eur J Oper Res 196(3):1058–1075

    MathSciNet  MATH  Google Scholar 

  • Shen B, Chen C (2019) Quality management in outsourced global fashion supply chains: an exploratory case study. Prod Plan Control 1–13

  • Shen B, Li Q, Dong C, Quan V (2016) Design outsourcing in the fashion supply chain: OEM versus ODM. J Oper Res Soc 67(2):259–268

    Google Scholar 

  • Stanko MA, Calantone RJ (2011) Controversy in innovation outsourcing research: review, synthesis and future directions. R&D Manag 41(1):8–20

    Google Scholar 

  • Wang J, Shin H (2015) The impact of contracts and competition on upstream innovation in a supply chain. Prod Oper Manag 24(1):134–146

    Google Scholar 

  • Wang CX, Webster S (2007) Channel coordination for a supply chain with a risk-neutral manufacturer and a loss-averse retailer. Decis Sci 38(3):361–389

    Google Scholar 

  • Wang S-D, Zhou Y-W, Min J, Zhong Y-G (2011) Coordination of cooperative advertising models in a one-manufacturer two-retailer supply chain system. Comput Ind Eng 61(4):1053–1071

    Google Scholar 

  • Wang Q, Chu B, Wang J, Kumakiri Y (2012) Risk analysis of supply contract with call options for buyers. Int J Prod Econ 139(1):97–105

    Google Scholar 

  • Wang Y, Niu B, Guo P (2013) On the advantage of quantity leadership when outsourcing production to a competitive contract manufacturer. Prod Oper Manag 22(1):104–119

    Google Scholar 

  • Wang J, Cheng X, Wang X, Yang H, Zhang S (2019) Myopic versus farsighted behaviors in a low-carbon supply chain with reference emission effects. Complexity

  • Wen X, Choi T-M, Chung S-H (2019) Fashion retail supply chain management: a review of operational models. Int J Prod Econ 207:34–55

    Google Scholar 

  • Wu DD (2016) Service quality, outsourcing and upward channel decentralization. J Oper Res Soc 67(2):240–247

    Google Scholar 

  • Wu X, Zhang F (2014) Home or overseas? An analysis of sourcing strategies under competition. Manag Sci 60(5):1223–1240

    Google Scholar 

  • Xiao T, Choi T-M, Cheng T (2015) Optimal variety and pricing decisions of a supply chain with economies of scope. IEEE Trans Eng Manag 62(3):411–420

    Google Scholar 

  • Yan R, Cao Z (2017) Product returns, asymmetric information, and firm performance. Int J Prod Econ 185:211–222

    Google Scholar 

  • Zhang Q, Zhang J, Tang W (2017) Coordinating a supply chain with green innovation in a dynamic setting. 4OR 15(2):133–162

    MathSciNet  MATH  Google Scholar 

  • Zhao Y, Choi T-M, Cheng T, Wang S (2018) Supply option contracts with spot market and demand information updating. Eur J Oper Res 266(3):1062–1071

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (71572033, 71832001), the Fundamental Research Funds for the Central Universities (CUSF-DH-D-2019102). We thank the editor and the two anonymous reviewers for their helpful comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is an extended version of a paper titled Optimal Sharing Strategies of Idle Manufacturing Resource Considering the Effect of SupplyDemand Matching, which was published in the Proceedings of the 8th International Conference on Industrial Engineering and Systems Management (IESM 2019) and recommended for publication in Journal of Combinatorial Optimization by the program committee of the conference.

Appendices

Appendix A

Proof of Proposition 1

The optimization problem of the fashion supply chain is given as

$$\mathop {\hbox{max} }\limits_{I\left( t \right),p\left( t \right),A\left( t \right)} J_{SC}^{C} = \int_{0}^{\infty } {e^{ - \rho t} \left\{ {p\left( t \right)Q\left( t \right) - C_{I} \left( t \right) - C_{A} \left( t \right)} \right\}dt} .$$
(A.1)

Let the value function \(V_{SC}^{C} \left( {\theta ,G} \right) = \mathop {\hbox{max} }\limits_{I,p,A} \int_{t}^{\infty } {e^{ - \rho (\tau - t)} } \left\{ {p\left( t \right)Q\left( t \right) - C_{I} \left( t \right) - C_{A} \left( t \right)} \right\}d\tau\); the optimal profit function of the fashion supply chain then is given as

$$J_{SC}^{C} = e^{ - \rho t} V_{SC}^{C} \left( {\theta ,G} \right).$$
(A.2)

The value function of the fashion supply chain \(V_{SC}^{C} \left( {\theta ,G} \right)\) satisfies the HJB equation as

$$\rho V_{SC}^{C} \left( {\theta ,G} \right) = \mathop {\hbox{max} }\limits_{I,p,A} \left\{ \begin{aligned} p\left( {a - bp} \right)\left( {\mu \theta + \phi G} \right) - \frac{1}{2}k_{1} I^{2} - \frac{1}{2}k_{2} A^{2} \hfill \\ + V_{SC\theta }^{C'} \left( {\delta I - \eta \theta } \right) + V_{SCG}^{C'} \left( {\tau A + r\theta - \varepsilon G} \right) \hfill \\ \end{aligned} \right\},$$
(A.3)

Maximization of the right-hand side of the HJB formula with respect to I, p and A yields

$$I = \frac{{\delta V_{SC\theta }^{C'} }}{{k_{1} }},p = \frac{a}{2b},A = \frac{{\tau V_{SCG}^{C'} }}{{k_{2} }},$$
(A.4)

Inserting (A.2) and (A.3) on the right-hand side of the HJB equation provides

$$\rho V_{SC}^{C} \left( {\theta ,G} \right) = \left( {\frac{{\mu a^{2} }}{4b} - \eta V_{SC\theta }^{C'} + rV_{SCG}^{C'} } \right)\theta + \left( {\frac{{\phi a^{2} }}{4b} - \varepsilon V_{SCG}^{C'} } \right)G + \frac{{\left( {\delta V_{SC\theta }^{C'} } \right)^{2} }}{{2k_{1} }} + \frac{{\left( {\tau V_{SCG}^{C'} } \right)^{2} }}{{2k_{2} }},$$
(A.5)

Note that \(V_{SC}^{C} \left( {\theta ,G} \right)\) is the value function for the maximization problem P1. Guided by the model’s linear structure, we conjecture that the fashion supply chain’ value function is linear and given by

$$V_{SC}^{C} \left( {\theta ,G} \right) = m_{1} \theta + m_{2} G + m_{3} , ,$$
(A.6)

and follows from (A.6) that

$$V_{SC\theta }^{C'} = m_{1} ,\quad V_{SCG}^{C'} = m_{2} ,$$
(A.7)

Substituting (A.6) and (A.7) into (A.5), and then equating the coefficients of θ, G on both sides of (A.5), we get the expressions of m1, m2, and m3 given by:

$$\left\{ {\begin{array}{*{20}l} {m_{1}^{*} = \frac{{a^{2} }}{{4b\left( {\rho + \eta } \right)}}\left( {\mu + \frac{\phi r}{\rho + \varepsilon }} \right)} \hfill \\ {m_{2}^{*} = \frac{{\phi a^{2} }}{{4b\left( {\rho + \varepsilon } \right)}}} \hfill \\ {m_{3}^{*} = \frac{{\delta^{2} m_{1}^{*2} }}{{2\rho k_{1} }} + \frac{{\tau^{2} m_{2}^{*2} }}{{2\rho k_{2} }}} \hfill \\ \end{array} } \right.,$$
(A.8)

Substituting (A.8) into (A.4), we get the expressions of the optimal selling price, advertising and design innovation investment strategies shown in Proposition 1.

Substituting optimal strategies (10) into (1) and (2), we can obtain the following homogeneous equations,

$$\left[ {\begin{array}{*{20}c} {\mathop \theta \limits^{ \bullet } } \\ {\mathop G\limits^{ \bullet } } \\ \end{array} } \right] = \bar{B}\left[ {\begin{array}{*{20}c} \theta \\ G \\ \end{array} } \right] + \beta ,$$
(A.9)

where \(\bar{B} = \left[ {\begin{array}{*{20}c} { - \eta } & 0 \\ r & { - \varepsilon } \\ \end{array} } \right]\), \(\beta = \left[ {\begin{array}{*{20}c} {\delta E^{C*} } \\ {\varepsilon A^{C*} } \\ \end{array} } \right]\). The characteristic roots of formula (A.9) are

$$\lambda_{1} = - \eta ,\quad \lambda_{2} = - \varepsilon$$
(A.10)

The characteristic vectors of formula (A.9) are

$$H = \left[ {\begin{array}{*{20}l} {\left( {\eta - \varepsilon } \right)/r} \hfill & 0 \hfill \\ 1 \hfill & 1 \hfill \\ \end{array} } \right],$$
(A.11)

Substituting (A.11) and (A.10) into (A.9), we have,

$$\left[ {\begin{array}{*{20}c} {\theta \left( t \right)} \\ {G\left( t \right)} \\ \end{array} } \right] = H\left[ {\begin{array}{*{20}l} {e^{ - \eta t} } \hfill & 0 \hfill \\ 0 \hfill & {e^{ - \varepsilon t} } \hfill \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {c_{1} } \\ {c_{2} } \\ \end{array} } \right] - \bar{B}^{ - 1} \beta ,$$
(A.12)

where c1 and c2 are constants to be determined.

Since the initial conditions \(\theta \left( 0 \right) = \theta_{0}\) and \(G\left( 0 \right) = G_{0}\), we have,

$$c_{1} = \frac{{Q_{0} r}}{\eta - \varepsilon } - \frac{{E^{C*} \delta r}}{{\eta \left( {\eta - \varepsilon } \right)}},$$
(A.13)
$$c_{2} = G_{0} - G_{\infty } - c_{1} ,$$
(A.14)

Therefore, the general solutions of (A.12) are given by

$$\left\{ {\begin{array}{*{20}l} {\theta^{C*} \left( t \right) = \left( {\theta_{0} - \theta_{\infty }^{C} } \right)e^{ - \eta t} + \theta_{\infty }^{C} } \hfill \\ {G^{C*} \left( t \right) = \frac{r}{\varepsilon - \eta }\left( {\theta_{0} - \theta_{\infty }^{C} } \right)e^{ - \eta t} + \left( {G_{0} - G_{\infty }^{C} - \frac{r}{\varepsilon - \eta }\left( {\theta_{0} - \theta_{\infty }^{C} } \right)} \right)e^{ - \varepsilon t} + G_{\infty }^{C} } \hfill \\ \end{array} } \right.,$$
(A.15)

where \(\theta_{\infty }^{C}\) and \(G_{\infty }^{C}\) are the particular solution to system (A.12) shown in Proposition 2.This completes the proof. □

Appendix B

Proof of Proposition 2

Because the game is played à la Stackelberg and the fashion brand is the leader, we first derive the decision variables for the supplier for the second game stage. The optimization problem of supplier is given as

$$\mathop {\hbox{max} }\limits_{I\left( t \right)} J_{S}^{D} = \int_{0}^{\infty } {e^{ - \rho t} \left\{ {\omega Q\left( t \right) - C_{I} \left( t \right)} \right\}dt} .$$
(B.1)

Let the value function \(V_{S}^{D} \left( {\theta ,G} \right) = \mathop {\hbox{max} }\limits_{I} \int_{t}^{\infty } {e^{ - \rho (\tau - t)} } \left\{ {\omega Q\left( t \right) - C_{I} \left( t \right)} \right\}d\tau\); the optimal profit function of supplier then is given as

$$J_{S}^{D} = e^{ - \rho t} V_{S}^{D} \left( {\theta ,G} \right).$$
(B.2)

Similarly, let \(V_{B}^{D} \left( {\theta ,G} \right)\) denote value function of the brand; the optimal profit function of the fashion brand is given by

$$J_{B}^{D} = e^{ - \rho t} V_{B}^{D} \left( {\theta ,G} \right). .$$
(B.3)

The supplier’s HJB is

$$\rho V_{S}^{D} \left( {\theta ,G} \right) = \mathop {\hbox{max} }\limits_{I} \left\{ \begin{aligned} \omega \left( {a - bp} \right)\left( {\mu \theta + \phi G} \right) - \frac{1}{2}k_{1} I^{2} + \hfill \\ V_{S\theta }^{D'} \left( {\delta I - \eta \theta } \right) + V_{SG}^{D'} \left( {\tau A + r\theta - \varepsilon G} \right) \hfill \\ \end{aligned} \right\},$$
(B.4)

and its maximization provides the necessary condition for design innovation,

$$I = \frac{{\delta V_{S\theta }^{D'} }}{{k_{1} }}.$$
(B.5)

Similarly, the fashion brand’s HJB equation is

$$\rho V_{B}^{D} \left( {\theta ,G} \right) = \mathop {\hbox{max} }\limits_{p,A} \left\{ \begin{aligned} \left( {p - \omega } \right)\left( {a - bp} \right)\left( {\mu \theta + \phi G} \right) - \frac{1}{2}k_{2} A^{2} \hfill \\ + V_{B\theta }^{D'} \left( {\delta I - \eta \theta } \right) + V_{BG}^{D'} \left( {\tau A + r\theta - \varepsilon G} \right) \hfill \\ \end{aligned} \right\},$$
(B.6)

and its maximisation provides the necessary condition for selling price and advertising effort

$$p = \frac{a + b\omega }{2b},A = \frac{{\tau V_{BG}^{D'} }}{{k_{2} }}. .$$
(B.7)

By inserting (B.5) and (B.7) inside the HJB equations, we obtain the following two algebraic equations,

$$\begin{aligned} \rho V_{S}^{D} \left( {\theta ,G} \right) & = \left( {\frac{{\omega \mu \left( {a - b\omega } \right)}}{2} - \eta V_{S\theta }^{D'} + rV_{SG}^{D'} } \right)\theta + \left( {\omega \phi \left( {a - b\omega } \right) - \varepsilon V_{SG}^{D'} } \right)G \\ & \quad + \,\frac{{\tau^{2} V_{BG}^{D'} V_{SG}^{D'} }}{{k_{2} }} + \frac{{\delta^{2} \left( {V_{S\theta }^{D'} } \right)^{2} }}{{2k_{1} }}, \\ \end{aligned}$$
(B.8)
$$\begin{aligned} \rho V_{B}^{D} \left( {\theta ,G} \right) & = \left( {\frac{{\mu \left( {a - b\omega } \right)^{2} }}{4b} - \eta V_{B\theta }^{D'} + rV_{BG}^{D'} } \right)\theta + \left( {\frac{{\phi \left( {a - b\omega } \right)^{2} }}{4b} - \varepsilon V_{BG}^{D'} } \right)G \\ & \quad + \,\frac{{\delta^{2} V_{B\theta }^{D'} V_{S\theta }^{D'} }}{{k_{1} }} + \frac{{\tau^{2} \left( {V_{BG}^{D'} } \right)^{2} }}{{2k_{2} }}, \\ \end{aligned}$$
(B.9)

Thus, we obtain the following linear forms for the value functions,

$$V_{S}^{D} \left( {\theta ,G} \right) = l_{1} \theta + l_{2} G + l_{3} ,\quad V_{B}^{D} \left( {\theta ,G} \right) = n_{1} \theta + n_{2} G + n_{3} ,$$
(B.10)

in which l1, l2, l3 and n1, n2, n3 are constants. We substitute \(V_{S}^{D} \left( {\theta ,G} \right)\), \(V_{B}^{D} \left( {\theta ,G} \right)\) from (B.10), as well as their derivatives, into (B.8B.9), and collect terms corresponding to θ, G. By solving the algebraic equations, we have

$$\left\{ {\begin{array}{*{20}l} {n_{1}^{*} = \frac{{\left( {a - b\omega } \right)^{2} }}{{4b\left( {\rho + \eta } \right)}}\left( {\mu + \frac{\phi r}{\rho + \varepsilon }} \right)} \hfill \\ {n_{2}^{*} = \frac{{\phi \left( {a - b\omega } \right)^{2} }}{{4b\left( {\rho + \varepsilon } \right)}}} \hfill \\ {n_{3}^{*} = \frac{{\delta^{2} n_{1}^{*} l_{1}^{*} }}{{\rho k_{1} }} + \frac{{\tau^{2} n_{2}^{*2} }}{{2\rho k_{2} }}} \hfill \\ \end{array} } \right.,$$
(B.11)
$$\left\{ \begin{aligned} l_{1}^{*} = \frac{{\omega \left( {a - b\omega } \right)}}{{2\left( {\rho + \eta } \right)}}\left( {\mu + \frac{\phi r}{\rho + \varepsilon }} \right) \hfill \\ l_{2}^{*} = \frac{{\phi \omega \left( {a - b\omega } \right)}}{{2\left( {\rho + \varepsilon } \right)}} \hfill \\ l_{3}^{*} = \frac{{\delta^{2} l_{1}^{*2} }}{{2\rho k_{1} }} + \frac{{\tau^{2} n_{2}^{*} l_{2}^{*} }}{{\rho k_{2} }} \hfill \\ \end{aligned} \right.,$$
(B.12)

Substituting (B.11) and (B.12) into (B.5) and (B.7), we get the expressions of the optimal selling price, advertising and design innovation strategies shown in Proposition 2.

The proof process of fashion level and goodwill is similar to that of Proposition 1, and are omitted here.This completes the proof. □

Proof of Proposition 3

Let \(G_{\infty }^{D} = \xi_{1} \omega \left( {a - b\omega } \right) + \xi_{2} \left( {a - b\omega } \right)^{2}\) denote the steady state value of goodwill at time \(t \to \infty\), differentiating \(G_{\infty }^{D}\) with respect to ω yields \(\partial G_{\infty }^{N} /\partial \omega = a\left( {\xi_{1} - 2b\xi_{2} } \right) - 2b\left( {\xi_{1} - b\xi_{2} } \right)\omega\). From \(\partial G_{\infty }^{N} /\partial \omega = 0\), we have \(\hat{\omega } = a\left( {\xi_{1} - 2b\xi_{2} } \right)/\left( {2b\left( {\xi_{1} - b\xi_{2} } \right)} \right)\). We discuss the following three scenarios,

  • Scenario a \(\xi_{1} \ge 2b\xi_{2}\). If \(\omega \in \left( {0,\hat{\omega }} \right)\), then \(\partial G_{\infty }^{N} /\partial \omega \ge 0\); If \(\omega \in \left( {\hat{\omega },a/b} \right)\), then \(\partial G_{\infty }^{N} /\partial \omega \le 0\).

  • Scenario b \(\xi_{1} \le b\xi_{2}\). If \(\omega \in \left( {0,\hat{\omega }} \right)\), then \(\partial G_{\infty }^{N} /\partial \omega \le 0\); If \(\omega \in \left( {\hat{\omega },a/b} \right)\), then \(\partial G_{\infty }^{N} /\partial \omega \ge 0\).

  • Scenario c \(b\xi_{2} \le \xi_{1} \le 2b\xi_{2}\). If \(\omega \in \left( {0,a/b} \right)\), then \(\partial G_{\infty }^{N} /\partial \omega \le 0\).

This completes the proof. □

Proof of Proposition 4

(i) Differentiating the supplier’s profit function \(J_{S}^{D}\) with respect to \(\omega\) yields,\(\partial J_{S}^{D} /\partial \omega = 2b\varOmega_{1} \left( {a - 2b\omega } \right) + 4b\varOmega_{2} \left( {a - b\omega } \right)^{2} \left( {a - 4b\omega } \right) + 2b\varOmega_{3} \omega \left( {a - b\omega } \right)\left( {a - 2b\omega } \right)\). It is easy to prove that \(\partial J_{S}^{D} /\partial \omega > 0\) for \(\omega \in \left( {0,a/\left( {4b} \right)} \right)\) and \(\partial J_{S}^{D} /\partial \omega < 0\) for \(\omega \in \left( {a/\left( {2b} \right),a/b} \right)\). In other words, the supplier’s profit function \(J_{S}^{D}\) is strictly increasing in \(\omega\) on the interval \(\left( {0,a/\left( {4b} \right)} \right)\), and strictly decreasing on the interval \(\left( {a/\left( {2b} \right),a/b} \right)\). By the intermediate value theorem, there exists \(\omega_{S} \in \left( {a/\left( {4b} \right),a/\left( {2b} \right)} \right)\) satisfying \(\partial J_{S}^{D} /\partial \omega = 0\). Next, we prove the uniqueness of \(\omega_{S}\). Taking the second-order derivative of \(J_{S}^{D}\) with respect to \(\omega\) yields

$$\partial^{2} J_{S}^{D} /\partial \omega^{2} = - 4b^{2} \varOmega_{1} - 24b^{2} \varOmega_{2} \left( {a - b\omega } \right)\left( {a - 2b\omega } \right) + 2b\varOmega_{3} \left[ {\left( {a - b\omega } \right)\left( {a - 4b\omega } \right) - b\omega \left( {a - 2b\omega } \right)} \right],$$

which follows that \(\partial^{2} J_{S}^{D} /\partial \omega^{2} < 0\) for any \(\omega_{S} \in \left( {a/\left( {4b} \right),a/\left( {2b} \right)} \right)\). This indicates that supplier’s profit function \(J_{S}^{D}\) is strictly concave in \(\omega\) on the interval \(\left( {0,a/b} \right)\) and \(\omega_{S}\) is the unique maximum value point.

(ii) Differentiating the fashion brand’s profit function \(J_{B}^{D}\) with respect to ω yields,\(\partial J_{B}^{D} /\partial \omega = - 2b\varOmega_{1} \left( {a - b\omega } \right) - 4b\varOmega_{2} \left( {a - b\omega } \right)^{3} + \varOmega_{3} \left( {a - b\omega } \right)^{2} \left( {a - 4b\omega } \right)\). It is easy to prove that \(\partial J_{B}^{D} /\partial \omega < 0\) for \(\omega \in \left( {a/\left( {4b} \right),a/b} \right)\). In other words, the fashion brand’s profit function \(J_{B}^{D}\) is strictly decreasing on the interval \(\omega \in \left( {a/\left( {4b} \right),a/b} \right)\). Since \(a/\left( {4b} \right) < \omega_{S}\), it can be easily shown that the profit of the fashion brand strictly decreasing on the interval \(\omega \in \left( {\omega_{S} ,a/b} \right)\).This completes the proof. □

Proof of Proposition 5

Differentiating the profit of the fashion supply chain \(J_{SC}^{D}\) with respect to ω yields, \(\partial J_{SC}^{D} /\partial \omega = \partial J_{B}^{D} /\partial \omega + \partial J_{S}^{D} /\partial \omega = - 2b^{2} \varOmega_{1} \omega - 12b^{2} \varOmega_{2} \omega \left( {a - b\omega } \right)^{2} + a\varOmega_{3} \left( {a - b\omega } \right)\left( {a - 3b\omega } \right)\). It is easy to prove that \(\partial J_{SC}^{D} /\partial \omega < 0\) for \(\omega \in \left( {a/\left( {3b} \right),a/b} \right)\). In addition, the limit value is \(\mathop {\lim }\limits_{\omega \to 0} \partial J_{SC}^{D} /\partial \omega = a^{3} \varOmega_{3} > 0\). By the intermediate value theorem, there exists \(\omega_{SC} \in \left( {0,a/\left( {3b} \right)} \right)\) satisfying \(\partial J_{SC}^{D} /\partial \omega = 0\). Next, we prove the uniqueness of \(\omega_{SC}\).Taking the second-order derivative of \(J_{SC}^{D}\) with respect to ω yields \(\partial^{2} J_{SC}^{D} /\partial \omega^{2} = - 2b^{2} \varOmega_{1} - 12b^{2} \varOmega_{2} \left( {a - b\omega } \right)\left( {a - 3b\omega } \right) - 2ab\varOmega_{3} \left( {2a - 3b\omega } \right)\), which follows that \(\partial^{2} J_{SC}^{D} /\partial \omega^{2} < 0\) for any \(\omega_{SC} \in \left( {0,a/\left( {3b} \right)} \right)\). This indicates that the profit of fashion supply chain \(J_{SC}^{D}\) is strictly concave in ω on the interval \(\left( {0,a/\left( {3b} \right)} \right)\) and \(\partial J_{SC}^{D} /\partial \omega\) is strictly decreasing in ω. Therefore \(\omega_{SC}\) is the unique maximum value point.This completes the proof. □

Proof of Proposition 6

Straightforward comparisons, using the equilibrium selling price, advertising effort and design innovation from Propositions 1 and 2, lead to the results:

$$\Delta p^{*} = p^{C*} - p^{D*} ,$$
(B.13)
$$\Delta A^{*} = A^{C*} - A^{D*} ,$$
(B.14)
$$\Delta I^{*} = I^{C*} - I^{D*} ,$$
(B.15)
$$\Delta J_{SC}^{*} = J_{SC}^{C*} - J_{SC}^{D*} .$$
(B.16)
  1. (i)

    Based on the results in Propositions 1 and 2, we can verify that \(\Delta p^{*} = - \omega /2 < 0\), \(\Delta A^{*} = \frac{\tau \phi }{{4bk_{2} \left( {\rho + \varepsilon } \right)}}\left[ {a^{2} - \left( {a - b\omega } \right)^{2} } \right] > 0\).

  2. (ii)

    We can also obtain \(\Delta I^{*} = \frac{\delta }{{2k_{1} \left( {\rho + \eta } \right)}}\left( {\mu + \frac{\phi r}{\rho + \varepsilon }} \right)\left\{ {\frac{{a^{2} }}{2b} - \omega \left( {a - b\omega } \right)} \right\}\). For notational convenience, let \(f_{1} = \omega \left( {a - b\omega } \right)\). It follows that \(\partial f_{1} /\partial \omega = a - 2b\omega > 0\) for any \(\omega \in \left( {0,a/\left( {3b} \right)} \right)\) and This implies that f1 is strictly increasing on the internal \(\left( {0,a/\left( {3b} \right)} \right)\). Since the maximum value of f1 is \(\mathop {\lim }\limits_{{\omega \to a/\left( {3b} \right)}} f_{1} = 2a^{2} /9b\), we get \(a^{2} /2b - f_{1} > 0\). Subsequently, we can obtain \(\Delta I^{*} > 0\).

  3. (iii)

    We can obtain \(\Delta J_{SC}^{*} = b^{2} \omega^{2} \varOmega_{1} + \left[ {a^{4} - \left( {a - b\omega } \right)^{3} \left( {a + 3b\omega } \right)} \right]\varOmega_{2} + \left[ {a^{4} /b - a\omega \left( {a - b\omega } \right)^{2} } \right]\varOmega_{3}\). For notational convenience, let \(f_{2} = \left( {a - b\omega } \right)^{3} \left( {a + 3b\omega } \right)\), \(f_{3} = a\omega \left( {a - b\omega } \right)^{2}\). It follows that \(\partial f_{2} /\partial \omega = - 12\omega b^{2} \left( {a - b\omega } \right)^{2} < 0\) for any \(\omega \in \left( {0,a/\left( {3b} \right)} \right)\). This implies that f2 is strictly decreasing on the internal \(\left( {0,a/\left( {3b} \right)} \right)\). Since the maximum value of f2 is \(\mathop {\lim }\limits_{\omega \to 0} f_{2} = a^{4}\), we get \(a^{4} - f_{2} > 0\). Similarly, we get \(df_{3} /d\omega = a\left( {a - b\omega } \right)\left( {a - 3b\omega } \right) > 0\) for any \(\omega \in \left( {0,a/\left( {3b} \right)} \right)\). This implies that f3 is strictly increasing on the internal \(\left( {0,a/\left( {3b} \right)} \right)\). Since the maximum value of f3 is \(\mathop {\lim }\limits_{{\omega \to a/\left( {3b} \right)}} f_{3} = 4a^{4} /27b\), we get \(a^{4} /b - f_{3} > 0\). Subsequently, we can obtain \(\Delta J_{SC}^{*} > 0\).

This completes the proof. □

Proof of Proposition 7

Let \(V_{S}^{U} \left( {\theta ,G} \right)\), \(V_{B}^{U} \left( {\theta ,G} \right)\) denote the value function for the supplier and the fashion brand, respectively. The supplier’s HJB equation can be specified as

$$\rho V_{S}^{U} \left( {\theta ,G} \right) = \mathop {\hbox{max} }\limits_{I} \left\{ {\varPsi - \frac{1}{2}k_{1} I^{2} + V_{S\theta }^{U'} \left( {\delta I - \eta \theta } \right) + V_{SG}^{U'} \left( {\tau A + r\theta - \varepsilon G} \right)} \right\},$$
(B.17)

The equilibrium design innovation is given below by maximizing the right-hand side of (B.17) with respect to I, i.e.,

$$I = \frac{{\delta V_{SC\theta }^{U'} }}{{k_{1} }}.$$
(B.18)

The fashion brand’s HJB equation can be specified as

$$\rho V_{B}^{U} \left( {\theta ,G} \right) = \mathop {\hbox{max} }\limits_{p,A} \left\{ {p\left( {a - bp} \right)\left( {\mu \theta + \phi G} \right) - \varPsi - \frac{1}{2}k_{2} A^{2} + V_{B\theta }^{U'} \left( {\delta I - \eta \theta } \right) + V_{BG}^{U'} \left( {\tau A + r\theta - \varepsilon G} \right)} \right\}$$
(B.19)

and its maximisation provides the necessary condition for selling price and advertising efforts:

$$p = \frac{a}{2b},A = \frac{{\tau V_{SCG}^{U'} }}{{k_{2} }}.$$
(B.20)

Similar to that of Proposition 2, we have

$$\left\{ {\begin{array}{*{20}l} {I^{U*} = \frac{{\delta a^{2} }}{{4bk_{1} \left( {\rho + \eta } \right)}}\left( {\mu + \frac{\phi r}{\rho + \varepsilon }} \right)} \hfill \\ {A^{U*} = \frac{{\tau \phi a^{2} }}{{4bk_{2} \left( {\rho + \varepsilon } \right)}}} \hfill \\ {p^{U*} = \frac{a}{2b}} \hfill \\ \end{array} } \right..$$
(B.21)

Consequently, \(I^{U*} = I^{C*}\), \(p^{U*} = p^{C*}\), \(A^{U*} = A^{C*}\). These equilibrium strategies are identical with integrated solutions. Similarly, the profits of the supplier and fashion brand, \(J_{B}^{U*} \left( \varPsi \right)\), \(J_{S}^{U*} \left( \varPsi \right)\), are given by the value functions in (27) and (28).This completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Xu, Q. Joint optimal pricing and advertising policies in a fashion supply chain under the ODM strategy considering fashion level and goodwill. J Comb Optim 43, 1075–1105 (2022). https://doi.org/10.1007/s10878-020-00623-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-020-00623-y

Keywords

Navigation