Skip to main content
Log in

Developing Mg-Zn surface alloy by friction surface allosying: In vitro degradation studies in simulated body fluids

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

A new variant of friction-assisted process named friction surface alloying (FSA) for developing surface alloys was demonstrated in the present work. In FSA, the dispersed phase is melted and allowed to react with the matrix material to form an alloy at the surface of a metallic substrate. In the present work, magnesium (Mg) sheets and zinc (Zn) powder were selected, and fine grained (∼3.5 µm) Mg-Zn surface alloy with improved hardness was produced by FSA. X-ray diffraction studies confirmed the formation of intermetallic phases of Mg and Zn at the surface. From the in vitro degradation studies carried out by immersing in simulated body fluids, a lower corrosion rate was observed for the Mg-Zn surface alloy compared with pure Mg. The surface morphologies after immersion studies indicated large degraded areas on the base Mg compared with Mg-Zn. The results demonstrate the potential of FSA in developing Mg-based surface alloys without melting the substrate to impart better surface properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. H. Hermawan, D. Dubé, and D. Mantovani, Developments in metallic biodegradable stents, Acta Biomater., 6(2010), No. 5, p. 1693.

    CAS  Google Scholar 

  2. H. Hornberger, S. Virtanen, and A.R. Boccaccini, Biomedical coatings on magnesium alloys — A review, Acta. Biomater., 8(2012), No. 7, p. 2442.

    CAS  Google Scholar 

  3. R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), No. 1–2, p. 1.

    Google Scholar 

  4. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 Al alloy, Scripta Mater., 42(1999), No. 2, p. 163.

    Google Scholar 

  5. V. Sharma, U. Prakash, and B.V.M. Kumar, Surface composites by friction stir processing: A review, J. Mater. Process. Technol., 224(2015), p. 117.

    CAS  Google Scholar 

  6. L.Y. Huang, K.S. Wang, W. Wang, K. Zhao, J. Yuan, K. Qiao, B. Zhang, and J. Cai, Mechanical and corrosion properties of low-carbon steel prepared by friction stir processing, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 202.

    CAS  Google Scholar 

  7. S. Cartigueyen and K. Mahadevan, Effects of heat generation on microstructure and hardness of Cu/SiCp surface composite processed by friction stir processing, Mater. Sci. Forum, 830–831(2015), p. 472.

    Google Scholar 

  8. R. Bauri, G.D. Janaki Ram, D. Yadav, and C.N. Shyam Kumar, Effect of process parameters and tool geometry on fabrication of Ni particles reinforced 5083 Al composite by friction stir processing, Mater. Today: Proc., 2(2015), No. 4–5, p. 3203.

    Google Scholar 

  9. B. Ratna Sunil, Different strategies of secondary phase incorporation into metallic sheets by friction stir processing in developing surface composites, Int. J. Mech. Mater. Eng., 11(2016), No. 1, p. 1.

    Google Scholar 

  10. M.S. Khorrami, M. Kazeminezhad, Y. Miyashita, and A.H. Kokbi, Improvement in the mechanical properties of Al/SiC nanocomposites fabricated by severe plastic deformation and friction stir processing, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 297.

    CAS  Google Scholar 

  11. N. Yuvaraj and S. Aravindan, Comparison studies on mechanical and wear behavior of fabricated aluminum surface nano composites by fusion and solid state processing, Surf. Coat. Technol., 309(2017), p. 309.

    CAS  Google Scholar 

  12. B. Ratna Sunil, G. Pradeep Kumar Reddy, H. Patle, and R. Dumpala, Magnesium based surface metal matrix composites by friction stir processing, J. Magnes. Alloys, 4(2016), No. 1, p. 52.

    Google Scholar 

  13. J. Gandra, H. Krohn, R.M. Miranda, P. Vilaca, L. Quintino, and J.F. dos Santos, Friction surfacing — A review, J. Mater. Process. Technol., 214(2014), No. 5, p. 1062.

    Google Scholar 

  14. J.J.S. Dilip and G.D. Janaki Ram, Microstructures and properties of friction freeform fabricated borated stainless steel, J. Mater. Eng. Perform., 22(2013), No. 10, p. 3034.

    CAS  Google Scholar 

  15. J.J.S. Dilip and G.D. Janaki Ram, Microstructure evolution in aluminum alloy AA 2014 during multi-layer friction deposition, Mater. Charact., 86(2013), p. 146.

    CAS  Google Scholar 

  16. J.M. Rodelas, J.C. Lippold, J.R. Rule, and J. Livingston, Friction stir processing as a base metal preparation technique for modification of fusion weld microstructures, [in] Friction Stir Welding and Processing VI, 2011, p. 323.

  17. N. Balasubramanian, R.S. Mishra, and K. Krishnamurthy, Process forces during friction stir channeling in an aluminum alloy, Int. J. Mater. Process. Technol., 211(2011), No. 2, p. 305.

    CAS  Google Scholar 

  18. N. Saikrishna, G. Pradeep Kumar Reddy, B. Munirathinam, and B. Ratna Sunil, Influence of bimodal grain size distribution on the corrosion behavior of friction stir processed biodegradable AZ31 magnesium alloy, J. Magnes. Alloys, 4(2016), No. 1, p. 68.

    CAS  Google Scholar 

  19. T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomateriah, 27(2006), No. 15, p. 2907.

    CAS  Google Scholar 

  20. ASTM International, ASTM Standard NACE TM0169/G31-12a: Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken, 2012.

    Google Scholar 

  21. M.J. Shen, M.F. Zhang, and W.F. Ying, Processing, microstructure and mechanical properties of bimodal size SiCp reinforced AZ31B magnesium matrix composites, J. Magnes. Alloys, 3(2015), No. 2, p. 162.

    CAS  Google Scholar 

  22. B. Ratna Sunil, T.S. Sampath Kumar, and C. Uday, Bioactive magnesium by friction stir processing, Mater. Sci. Forum, 710(2012), p. 264.

    CAS  Google Scholar 

  23. H.E. Fridrich and B.L. Mordike, Magnesium Technology, Springer, Heidelberg, Germany, 2006.

    Google Scholar 

  24. S. Benavides, Y. Li, L.E. Murr, D. Brown, and J.C. McClure, Low-temperature friction-stir welding of 2024 aluminum, Scripta Mater., 41(1999), No. 8, p. 809.

    CAS  Google Scholar 

  25. Y.J. Kwon, I. Shigematsu, and N. Saito, Mechanical properties of fine-grained aluminum alloy produced by friction stir process, Scripta Mater., 49(2003), No. 8, p. 785.

    CAS  Google Scholar 

  26. Z.Y. Ma, R.S. Mishra, and M.W. Mahoney, Superplastic deformation behaviour of friction stir processed 7075Al alloy, Acta Mater., 50(2002), No. 17, p. 4419.

    CAS  Google Scholar 

  27. B. Vandana, P. Syamala, D. Venugopal, S. Sk, B. Vnnkateswarlu, M. Jagannatham, M. Kolenčík, I. Ramakanth, R. Dumpala, and B. Ratna Sunil, Magnesium/fish bone derived hydroxyapatite composites by friction stir processing: Studies on mechanical behaviour and corrosion resistance, Bull. Mater. Sci., 42(2019), No. 3, p. 122.

    Google Scholar 

  28. M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and MagnesiumAlloys, ASM International, USA, 1999.

    Google Scholar 

  29. S.H.C. Park, Y. Sato, and H. Kokawa, Basal plane texture and flow pattern in friction stir weld of a magnesium alloy, Metall. Mater. Trans. A, 34(2003), No. 4, p. 987.

    Google Scholar 

  30. N. Saikrishna, G. Pradeep Kumar Reddy, B. Munirathinam, R. Dumpala, M. Jagannatham, and B. Ratna Sunil, An investigation on the hardness and corrosion behavior of MWCNT/Mg composites and grain refined Mg, J. Magnes. Alloys, 6(2018), No. 1, p. 83.

    CAS  Google Scholar 

  31. H. Wang, Y. Estrin, and Z. Zúberová, Bio-corrosion of a magnesium alloy with different processing histories, Mater. Lett., 62(2008), No. 16, p. 2476.

    CAS  Google Scholar 

  32. C. Hoog, N. Birbilis, and Y. Estrin, Corrosion of pure Mg as a function of grain size and processing route, Adv. Eng. Mater., 10(2008), No. 6, p. 579.

    Google Scholar 

  33. G.R. Argade, S.K. Panigrahi, and R.S. Mishra, Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium, Corros. Sci., 58(2012), p. 145.

    CAS  Google Scholar 

  34. M. Alvarez-Lopez, M.D. Pereda, J.A. del Valle, M. Fernandez-Lorenzo, M.C. Garcia-Alonso, O.A. Ruano, and M.L. Escudero, Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids, Acta Biomater., 6(2010), No. 5, p. 1763.

    CAS  Google Scholar 

  35. E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, M. Bestetti, F. Bonollo, and M. Vedani, Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications, J. Mech. Behav. Biomed. Mater., 37(2014), p. 307.

    CAS  Google Scholar 

  36. G.B. Hamu, D. Eliezer, and L. Wagner, The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy, J. Alloys Compd., 468(2009), No. 1–2, p. 222.

    Google Scholar 

  37. N.N. Aung and W. Zhou, Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy, Corros. Sci., 52(2010), No. 2, p. 589.

    CAS  Google Scholar 

  38. G.L. Song, A. Atrens, and M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D, Corros. Sci., 41(1998), No. 2, p. 249.

    Google Scholar 

  39. M.C. Zhao, M. Liu, G.L. Song, and A. Atrens, Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91, Corros. Sci., 50(2008), No. 7, p. 1939.

    CAS  Google Scholar 

  40. R.L. Xin, M.Y. Wang, J.C. Gao, P. Liu, and Q. Liu, Effect of microstructure and texture on corrosion resistance of magnesium alloy, Mater. Sci. Forum, 610–613(2009), p. 1160.

    Google Scholar 

  41. G.L. Song, The effect of texture on the corrosion behavior of AZ31 Mg alloy, JOM, 64(2012), No. 6, p. 671.

    CAS  Google Scholar 

  42. Y.P. Wu, H.Q. Xiong, Y.Z. Joa, S.H. Xie, and G.F. Li, Microstructure, texture and mechanical properties of Mg-8Gd—4Y-1Nd-0.5Zr alloy prepared by pre-deformation annealing, hot compression and ageing, Trans. Nonferrous Met. Soc. China, 29(2019), No. 5, p. 976.

    CAS  Google Scholar 

  43. E. Tolouie and R. Jamaati, Effect of β-Mg17Al12 phase on microstructure, texture and mechanical properties of AZ91 alloy processed by asymmetric hot rolling, Mater. Sci. Eng. A, 738(2018), p. 81.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ratna Sunil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badisha, V., Shaik, S., Dumpala, R. et al. Developing Mg-Zn surface alloy by friction surface allosying: In vitro degradation studies in simulated body fluids. Int J Miner Metall Mater 27, 962–969 (2020). https://doi.org/10.1007/s12613-020-2053-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2053-9

Keywords

Navigation