Skip to main content
Log in

Metal-doped (Cu,Zn)Fe2O4 from integral utilization of toxic Zn-containing electric arc furnace dust: An environment-friendly heterogeneous Fenton-like catalyst

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Pure metal-doped (Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust (EAFD) by solid-state reaction using copper salt as additive. The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio, calcination time, and calcination temperature on the structure and catalytic ability were systematically studied. Under the optimum conditions, the decolorization efficiency and total organic carbon (TOC) removal efficiency of the as-prepared ferrite for treating a Rhodamine B solution were approximately 90.0% and 45.0%, respectively, and the decolorization efficiency remained 83.0% after five recycles, suggesting that the as-prepared (Cu,Zn)Fe2O4 was an efficient heterogeneous Fenton-like catalyst with high stability. The high catalytic activity mainly depended on the synergistic effect of iron and copper ions occupying octahedral positions. More importantly, the toxicity characteristic leaching procedure (TCLP) analysis illustrated that the toxic Zn-containing EAFD was transformed into harmless (Cu,Zn)Fe2O4 and that the concentrations of toxic ions in the degraded solution were all lower than the national emission standard (GB/31574—2015), further confirming that the as obtained sample is an environment-friendly heterogeneous Fenton-like catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. V.N. Stathopoulos, A. Papandreou, D. Kanellopoulou, and C.J. Stournaras, Structural ceramics containing electric arc furnace dust, J. Hazard. Mater., 262(2013), p. 91.

    Article  CAS  Google Scholar 

  2. P.E. Tsakiridis, A. Katsiapi, and S. Agatzini-Leonardou, Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning, J. Hazard. Mater., 179(2010), No. 1–3, p. 1.

    Google Scholar 

  3. H.G. Wang, Y. Li, J.M. Gao, M. Zhang, and M. Guo, A novel hydrothermal method for zinc extraction and separation from zinc ferrite and electric arc furnace dust, Int. J. Miner. Metall. Mater., 23(2016), No. 2, p. 146.

    Article  Google Scholar 

  4. F. Pinakidou, M. Katsikini, E.C. Paloura, P. Kavouras, T. Kehagias, P. Komninou, T. Karakostas, and A. Erko, On the distribution and bonding environment of Zn and Fe in glasses containing electric arc furnace dust: A u-XAFS and u-XRF study, J. Hazard Mater., 142(2007), No. 1–2, p. 297.

    Article  CAS  Google Scholar 

  5. H.W. Ma, K. Matsubae, K. Nakajima, M.S. Tsai, K.H. Shao, P.C. Chen, C.H. Lee, and T. Nagasaka, Substance flow analysis of zinc cycle and current status of electric arc furnace dust management for zinc recovery in Taiwan, Resour. Conserv. Recycl., 56(2011), No. 1, p. 134.

    Article  Google Scholar 

  6. Y.C. Zhao and R. Stanforth, Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium, J. Hazard. Mater., 80(2000), No. 1–3, p. 223.

    CAS  Google Scholar 

  7. C.C. Su and Y.H. Shen, Deflocculation and classification of electric arc furnace dust in aqueous solution, Sep. Sci. Technol., 44(2009), No. 8, p. 1816.

    Article  CAS  Google Scholar 

  8. B. Liu, S.G. Zhang, B.M. Steenari, and C. Ekberg, Synthesis and properties of SrFe12O19 obtained by solid waste recycling of oily cold rolling mill sludge, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 642.

    Article  CAS  Google Scholar 

  9. H.G. Wang, M. Zhang, and M. Guo, Utilization of Zn-containing electric arc furnace dust for multi-metal doped ferrite with enhanced magnetic property: From hazardous solid waste to green product, J. Hazard. Mater., 339(2017), p. 248.

    Article  CAS  Google Scholar 

  10. H.G. Wang, W.W. Liu, N.N. Jia, M. Zhang, and M. Guo, Facile synthesis of metal-doped Ni-Zn ferrite from treated Zn-containing electric arc furnace dust, Ceram. Int., 43(2017), No. 2, p. 1980.

    Article  CAS  Google Scholar 

  11. J.M. Gao, M. Zhang, and M. Guo, Direct fabrication and characterization of metal doped magnesium ferrites from treated laterite ores by the solid state reaction method, Ceram. Int., 41(2015), No. 6, p. 8155.

    Article  CAS  Google Scholar 

  12. E.G. Garrido-Ramírez, B.K.G. Theng, and M.L. Mora, Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions — A review, Appl. Clay Sci., 47(2010), No. 3–4, p. 182.

    Article  Google Scholar 

  13. Y.B. Wang, H.Y. Zhao, M.F. Li, J. Fan, and G.H. Zhao, Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid, Appl. Catal. B, 147(2014), p. 534.

    Article  CAS  Google Scholar 

  14. J.H. Ramirez, F.J. Maldonadohodar, A.F. Pérez-Cadenas, C. Moreno-Castilla, C.A. Costa, and L.M. Madeira, Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts, Appl. Catal. B, 75(2007), No. 3–4, p. 312.

    Article  CAS  Google Scholar 

  15. Y.F. Diao, Z.K. Yan, M. Guo, and X.D. Wang, Magnetic multi-metal co-doped magnesium ferrite nanoparticles: an efficient visible light-assisted heterogeneous Fenton-like catalyst synthesized from saprolite laterite ore, J. Hazard. Mater., 344(2018), p. 829.

    Article  CAS  Google Scholar 

  16. R. Sharma and S. Singhal, Spinel ferrite mediated photo-Fenton degradation of phenolic analogues: A detailed study employing two distinct inorganic oxidants, Clean Soil Air Water, 46(2018), No. 1, art. No. 1700605.

  17. G. Fan, T. Ji, and L. Feng, Visible-light-induced photocatalyst based on cobalt-doped zinc ferrite nanocrystals, Ind. Eng. Chem. Res., 51(2012), No. 42, p. 13639.

    Article  CAS  Google Scholar 

  18. Y. Huang, C. Han, Y.Q. Liu, M.N. Nadagouda, L. Machala, K.E. O’Shea, V.K. Sharma, and D.D. Dionysiou, Degradation of atrazine by ZnxCu1−xFe2O4 nanomaterial-catalyzed sulfite under UV-vis light irradiation: Green strategy to generate \({\rm{S}}{{\rm{O}}_{\rm{4}}}{ \bullet ^ - }\), Appl. Catal. B, 221(2018), p. 380.

    Article  CAS  Google Scholar 

  19. W. Zhao, C. Liang, B.B. Wang, and S.T. Xing, Enhanced photocatalytic and Fenton-like performance of CuOx decorated Zn-Fe2O4, ACS Appl. Mater. Interfaces, 9(2017), No. 48, p. 41927.

    Article  CAS  Google Scholar 

  20. Z.K. Yan, J.M. Gao, Y. Li, M. Zhang, and M. Guo, Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite, RSC Adv., 5(2015), No. 112, p. 92778.

    Article  CAS  Google Scholar 

  21. F. Tudorache, P. D. Popa, M. Dobromir, and F. Iacomi, Studies on the structure and gas sensing properties of nickel-cobalt ferrite thin films prepared by spin coating, Mater. Sci. Eng. B, 178(2013), No. 19, p. 1334.

    Article  CAS  Google Scholar 

  22. Y.L. Zhao, C.P. Lin, H.J. Bi, Y.G. Liu, and Q.S. Yan, Magnetically separable CuFe2O4/AgBr composite photocatalysts: Preparation. characterization. photocatalytic activity and photocatalytic mechanism under visible light, Appl. Surf. Sci., 392(2017), p. 701.

    Article  CAS  Google Scholar 

  23. T. Mathew, N.R. Shiju, R. Sreekumar, S. Bollapragada, Gopinath, and S. Chinnakonda, Cu-Co synergism in Cu1−xCoxFe2O4-catalysis and XPS aspects, J. Catal., 210(2002), No. 2, p. 405.

    Article  CAS  Google Scholar 

  24. C. Cai, Z.Y. Zhang, L. Jin, S. Ni, Z. Hui, and D.D. Dionysiou, Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange II in water, Appl. Catal. B, 182(2016), p. 456.

    Article  CAS  Google Scholar 

  25. H. Lin, Z. Hui, W. Xue, L. Wang, and W. Jie, Electro-Fenton removal of Orange II in a divided cell: Reaction mechanism, degradation pathway and toxicity evolution, Sep. Purif. Technol., 122(2014), p. 533.

    Article  CAS  Google Scholar 

  26. Y.B. Wang, H.Y. Zhao, and G.H. Zhao, Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants, Appl. Catal. B, 164(2015), p. 396.

    Article  CAS  Google Scholar 

  27. X. Zhong, J.B. Jr, D. Duprez, H. Zhang, and S. Royer, Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: Effect on the activity for the CWPO of phenol reaction, Appl. Catal. B, 121–122(2012), p. 123.

    Article  Google Scholar 

  28. X. Han, H.Y. Zhang, T. Chen, M. Zhang, and M. Guo, Facile synthesis of metal-doped magnesium ferrite from saprolite laterite as an effective heterogeneous Fenton-like catalyst, J. Mol. Liq., 272(2018), p. 43.

    Article  CAS  Google Scholar 

  29. M. Dindarsafa, A. Khataee, B. Kaymak, B. Vahid, A. Karimi, and A. Rahmani, Heterogeneous sono-Fenton-like process using martite nanocatalyst prepared by high energy planetary ball milling for treatment of a textile dye, Ultrason. Sonochem., 34(2017), p. 389.

    Article  CAS  Google Scholar 

  30. H. Hassan and B.H. Hameed, Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4, Chem. Eng. J., 171(2011), No. 3, p. 912.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. U1810205), the National Basic Research Program of China (No. 2014CB 643401), and Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jw., Han, X., Chai, Rx. et al. Metal-doped (Cu,Zn)Fe2O4 from integral utilization of toxic Zn-containing electric arc furnace dust: An environment-friendly heterogeneous Fenton-like catalyst. Int J Miner Metall Mater 27, 996–1006 (2020). https://doi.org/10.1007/s12613-019-1962-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1962-y

Keywords

Navigation