Skip to main content

Advertisement

Log in

Ultrasonic vibration assisted tungsten inert gas welding of dissimilar metals 316L and L415

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316L and low alloy high strength steel L415. The effect of ultrasonic vibration on the microstructure and mechanical properties of a dissimilar metal welded joint of 316L and L415 was systematically investigated. The microstructures of both heat affected zones of L415 and weld metal were substantially refined, and the clusters of δ ferrite in traditional tungsten inert gas (TIG) weld were changed to a dispersive distribution via the ultrasonic vibration. The ultrasonic vibration promoted the uniform distribution of elements and decreased the micro-segregation tendency in the weld. With the application of ultrasonic vibration, the average tensile strength and elongation of the joint was improved from 613 to 650 MPa and from 16.15% to 31.54%, respectively. The content of Σ3 grain boundaries around the fusion line zone is higher and the distribution is more uniform in the ultrasonic vibration assisted welded joint compared with the traditional one, indicating an excellent weld metal crack resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. L.J. Zhang, Q. Pei, J.X. Zhang, Z.Y. Bi, and P.C. Li, Study on the microstructure and mechanical properties of explosive welded 2205/X65 bimetallic sheet, Mater. Des., 64(2014), p. 462.

    CAS  Google Scholar 

  2. X.D. Qian, Y. Wang, J.Y.R. Liew, and M.H. Zhang, A load-indentation formulation for cement composite filled pipe-in-pipe structures, Eng. Struct., 92(2015), p. 84.

    Google Scholar 

  3. R. Kacar and M. Acarer, An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel, J. Mater. Process. Technol., 152(2004), No. 1, p. 91.

    CAS  Google Scholar 

  4. A. Karolczuk, M. Kowalski, R. Banski, and F. Zok, Fatigue phenomena in explosively welded steel-titanium clad components subjected to push-pull loading, Int. J. Fatigue, 48(2013), p. 101.

    CAS  Google Scholar 

  5. K.D. Ramkumar, A. Singh, S. Raghuvanshi, A. Bajpai, T. Solanki, M. Arivarasu, N. Arivazhagan, and S. Narayanan, Metallurgical and mechanical characterization of dissimilar welds of austenitic stainless steel and super-duplex stainless steel-A comparative study, J. Manuf. Processes, 19(2015), p. 212.

    Google Scholar 

  6. H.T. Wang, G.Z. Wang, F.Z. Xuan, and S.T. Tu, An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint, Mater. Des., 44(2013), p. 179.

    CAS  Google Scholar 

  7. H.J. Aval, Microstructural evolution and mechanical properties of friction stir-welded C71000 copper-nickel alloy and 304 austenitic stainless steel, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1294.

    CAS  Google Scholar 

  8. H.S. Hosseini, M. Shamanian, and A. Kermanpur, Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds, Mater. Charact., 62(2011), No. 4, p. 425.

    Google Scholar 

  9. B. Kurt, The interface morphology of diffusion bonded dissimilar stainless steel and medium carbon steel couples, J. Mater. Process. Technol., 190(2007), No. 1–3, p. 138.

    CAS  Google Scholar 

  10. C.S. Zhou, Q.Y. Huang, Q. Guo, J.Y. Zheng, X.Y. Chen, J. Zhu, and L. Zhang, Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steel and Inconel 625 alloy, Corros. Sci., 110(2016), p. 242.

    CAS  Google Scholar 

  11. T. Sarikka, M. Ahonen, R. Mouginot, P. Nevasmaa, P. Karjalainen-Roikonen, U. Ehrnstén, and H. Hänninen, Microstructural, mechanical, and fracture mechanical characterization of SA508-Alloy182 dissimilar metal weld in view of mismatch state, Int. J. Press. Vessels Pip., 145(2016), p. 13.

    CAS  Google Scholar 

  12. H. Xu, M.J. Xu, C. Yu, H. Lu, X. Wei, J.M. Chen, and J.J. Xu, Effect of the microstructure in unmixed zone on corrosion behavior of 439 tube/308L tube-sheet welding joint, J. Mater. Process. Technol., 240(2017), p. 162.

    CAS  Google Scholar 

  13. T. Watanabe, M. Shiroki, A. Yanagisawa, and T. Sasaki, Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration, J. Mater. Process. Technol., 210(2010), No. 12, p. 1646.

    CAS  Google Scholar 

  14. Y. Cui, C.L. Xu, and Q. Han, Effect of ultrasonic vibration on unmixed zone formation, Scripta Mater., 55(2006), No. 11, p. 975.

    CAS  Google Scholar 

  15. S. Kumar, C.S. Wu, G.K. Padhy, and W. Ding, Application of ultrasonic vibrations in welding and metal processing: A status review, J. Manuf. Processes, 26(2017), p. 295.

    Google Scholar 

  16. G.K. Padhy, C.S. Wu, S. Gao, and L. Shi, Local microstructure evolution in Al 6061-T6 friction stir weld nugget enhanced by ultrasonic vibration, Mater. Des., 92(2016), p. 710.

    CAS  Google Scholar 

  17. F.Z. Yang, J. Zhou, and R.R. Ding, Ultrasonic vibration assisted tungsten inert gas welding of dissimilar magnesium alloys, J. Mater. Sci. Technol., 34(2018), No. 12, p. 2240.

    Google Scholar 

  18. P. Vasantharaja, M. Vasudevan, and P. Palanichamy, Effect of welding processes on the residual stress and distortion in type 316LN stainless steel weld joints, J. Manuf. Processes, 19(2015), p. 187.

    Google Scholar 

  19. J. Liu, H.Y. Zhu, Z. Li, W.F. Cui, and Y. Shi, Effect of ultrasonic power on porosity, microstructure, mechanical properties of the aluminum alloy joint by ultrasonic assisted laser-MIG hybrid welding, Opt. Laser Technol., 119(2019), art. No. 105619.

  20. Q.M. Liu, Y. Zhang, Y.L. Song, F.P. Qi, and Q.J. Zhai, Influence of ultrasonic vibration on mechanical properties and microstructure of 1Cr18Ni9Ti stainless steel, Mater. Des., 28(2007), No. 6, p. 1949.

    CAS  Google Scholar 

  21. X.C. Liu, C.S. Wu, and G.K. Padhy, Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding, Scripta Mater., 102(2015), p. 95.

    Google Scholar 

  22. M. Ahmadnia, A. Seidanloo, R. Teimouri, Y. Rostamiyan, and K.G. Titrashi, Determining influence of ultrasonic-assisted friction stir welding parameters on mechanical and tribological properties of AA6061 joints, Int. J. Adv. Manuf. Technol., 78(2015), No. 9–12, p. 2009.

    Google Scholar 

  23. S. Amini and M.R. Amiri, Study of ultrasonic vibrations’ effect on friction stir welding, Int. J. Adv. Manuf. Technol., 73(2014), No. 1–4, p. 127.

    Google Scholar 

  24. L. Shi, C.S. Wu, S. Gao, and G.K. Padhy, Modified constitutive equation for use in modeling the ultrasonic vibration enhanced friction stir welding process, Scripta Mater., 119(2016), p. 21.

    CAS  Google Scholar 

  25. H.G. Dong, L.Q. Yang, C. Dong, and S. Kou, Improving arc joining of Al to steel and Al to stainless steel, Mater. Sci. Eng. A, 534(2012), p. 424.

    CAS  Google Scholar 

  26. L. Shi, C.S. Wu, G.K. Padhy, and S. Gao, Numerical simulation of ultrasonic field and its acoustoplastic influence on friction stir welding, Mater. Des., 104(2016), p. 102.

    Google Scholar 

  27. H.T. Zhang, Q. Chang, J.H. Liu, H. Lu, H. Wu, and J.C. Feng, A novel rotating wire GMAW process to change fusion zone shape and microstructure of mild steel, Mater. Lett., 123(2014), p. 101.

    CAS  Google Scholar 

  28. Y.C. Lei, H.L. Xue, W.X. Hu, Z.Z. Liu, and J.C. Yan, Effect of arc ultrasonic vibration on microstructure of joint of plasma arc in situ welding of SiCp/6061Al, Sci. Technol. Weld. Joining, 16(2011), No. 7, p. 575.

    CAS  Google Scholar 

  29. Q.J. Sun, S.B Lin, C.L. Yang, and G.Q. Zhao, Penetration increase of AISI 304 using ultrasonic assisted tungsten inert gas welding, Sci. Technol. Weld. Joining, 14(2009), No. 8, p. 765.

    CAS  Google Scholar 

  30. X. Jian, H. Xu, T.T. Meek, and Q. Han, Effect of power ultrasound on solidification of aluminum A356 alloy, Mater. Lett., 59(2005), No. 2–3, p. 190.

    CAS  Google Scholar 

  31. W.L. Dai, Effects of high-intensity ultrasonic-wave emission on the weldability of aluminum alloy 7075-T6, Mater. Lett., 57(2003), No. 16–17, p. 2447.

    CAS  Google Scholar 

  32. Z.W. Xu, J.C. Yan, W. Chen, and S.Q. Yang, Effect of ultrasonic vibration on the grain refinement and SiC particle distribution in Zn-based composite filler metal, Mater. Lett., 62(2008), No. 17–18, p. 2615.

    CAS  Google Scholar 

  33. T. Yuan, Z. Luo, and S. Kou, Mechanism of grain refining in AZ91 Mg welds by arc oscillation, Sci. Technol. Weld. Joining, 22(2017), No. 2, p. 97.

    CAS  Google Scholar 

  34. Y. Morisada, H. Fujii, F. Inagaki, and M. Kamai, Development of high frequency tungsten inert gas welding method, Mater. Des., 44(2013), p. 12.

    CAS  Google Scholar 

  35. X.C. Liu and C.S. Wu, Elimination of tunnel defect in ultrasonic vibration enhanced friction stir welding, Mater. Des., 90(2016), p. 350.

    CAS  Google Scholar 

  36. C. Wichan and S. Loeshpahn, Effect of filler alloy on microstructure, mechanical and corrosion behaviour of dissimilar weldment between Aisi 201 stainless steel and low carbon steel sheets produced by a gas tungsten arc welding, Adv. Mater. Res., 581–582(2012), p. 808.

    Google Scholar 

  37. G.I. Eskin, Principles of ultrasonic treatment: Application for light alloys melts, Adv. Perform. Mater., 4(1997), No. 2, p. 223.

    CAS  Google Scholar 

  38. M. Talebi, M. Setareh, M. Saffar-Avval, and R.H. Abardeh, Numerical investigation of natural convection heat transfer in a cylindrical enclosure due to ultrasonic vibrations, Ultrasonics, 76(2017), p. 52.

    CAS  Google Scholar 

  39. K.S. Suslick, Sonochemistry, J. Cheminform., 47(1990), No. 4949, p. 1439.

    Google Scholar 

  40. P. Pocwiardowski, H. Lasota, and C. Ravn, Near boundary acoustic streaming in Ni-Fe alloy electrodeposition control, ActaAcust. United Acust., 91(2005), No. 2, p. 365.

    CAS  Google Scholar 

  41. C.L. Zhang, M.S. Wu, and J.L. Du, Improving weld quality by arc-excited ultrasonic treatment, Tsinghua Sci. Technol., 6(2001), No. 5, p. 475.

    CAS  Google Scholar 

  42. K.D. Ramkumar, S.S. Prabu, and N. Arivazhagan, Investigation on the fusion zone microstructures and mechanical integrity of AISI 904L and Inconel 625 weld joints, Mater. Res. Express, 6(2019), art. No. 086540.

  43. G.S. Bai, S.P. Lu, D.Z. Li, and Y.Y. Li, Intergranular corrosion behavior associated with delta-ferrite transformation of Timodified Super304H austenitic stainless steel, Corros. Sci., 90(2015), p. 347.

    CAS  Google Scholar 

  44. S.Y. Zhou, G.Y. Ma, D.J. Wu, D.S. Chai, and M.K. Lei, Ultrasonic vibration assisted laser welding of nickel-based alloy and austenite stainless steel, J. Manuf Processes, 31(2018), p. 759.

    Google Scholar 

  45. R.A. Masumura, P.M. Hazzledine, and C.S. Pande, Yield stress of fine grained materials, Acta Mater., 46(1998), No. 13, p. 4527.

    CAS  Google Scholar 

  46. B. Liu, P. Eisenlohr, F. Roters, and D. Raabe, Simulation of dislocation penetration through a general low-angle grain boundary, Acta Mater., 60(2012), No. 13–14, p. 5380.

    CAS  Google Scholar 

  47. C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, and H. Dong, Effect of microstructural refinement on the toughness of low carbon martensitic steel, Scripta Mater., 58(2008), No. 6, p. 492.

    CAS  Google Scholar 

  48. C.Y. Zhang, Q.F. Wang, J.X. Ren, R.X. Li, M.Z. Wang, and F.M. Zhang, Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel, Mater. Sci. Eng. A, 534(2012), p. 339.

    CAS  Google Scholar 

  49. L. Wang, B. Wang, and P.S. Zhou, Misorientation, grain boundary, texture and recrystallization study in X90 hot bend related to mechanical properties, Mater. Sci. Eng. A, 711(2018), p. 588.

    CAS  Google Scholar 

  50. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock, Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels, Mater. Sci. Eng. A, 441(2006), No. 1–2, p. 1.

    Google Scholar 

  51. E.M. Lehockey, A.M. Brennenstuhl, and I. Thompson, On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking, Corros. Sci., 46(2004), No. 10, p. 2383.

    CAS  Google Scholar 

  52. Z.R. Chen, Y.H. Lu, X.F. Ding, and T. Shoji, Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal, Mater. Charact., 121(2016), p. 166.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Technology Project of Nanchong and Southwest Petroleum University (SWPU) Cooperation (No. 18SXHZ0032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Wang or Li-ping Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Hx., Gong, Xf., Zhang, Sf. et al. Ultrasonic vibration assisted tungsten inert gas welding of dissimilar metals 316L and L415. Int J Miner Metall Mater 27, 943–953 (2020). https://doi.org/10.1007/s12613-019-1960-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1960-0

Keywords

Navigation