Skip to main content
Log in

Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions. These properties usually coexist and interact with each other. The correlation between the surface charge and hydration of minerals is summarized on the basis of innovative experimental, theoretical, and molecular dynamics simulation studies. The factors affecting the adsorption behavior of ions and water molecules, such as ion concentration, ion hydration radius and valence, and surface properties, are discussed. For example, the hydration and adsorption states completely differ between monovalent and divalent ions. For ions of the same valence, the effect of surface charge on the hydration force follows the Hofmeister adsorption series. Electrolyte concentration exerts a significant effect on the hydration force at high ion concentrations. Meanwhile, the ion correlations in high-concentration electrolyte systems become long range. The interfacial water structure largely depends on surface chemistry. The hydration layer between different surfaces shows large qualitative differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. E.I. Benítez, D.B. Genovese, and J.E. Lozano, Effect of pH and ionic strength on apple juice turbidity: Application of the extended DLVO theory, Food Hydrocolloids, 21(2007), No. 1, p. 100.

    Google Scholar 

  2. C.F. Liu, F.F. Min, L.Y. Liu, and J. Chen, Hydration properties of alkali and alkaline earth metal ions in aqueous solution: A molecular dynamics study, Chem. Phys. Lett., 727(2019), p. 31.

    CAS  Google Scholar 

  3. F.F. Min, C.I. Peng, and S.X. Song, Hydration layers on clay mineral surfaces in aqueous solutions: A review, Arch. Min. Sci., 59(2014), No. 2, p. 489.

    CAS  Google Scholar 

  4. R.M. Pashley, DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties, J. Colloid Interface Sci., 83(1981), No. 2, p. 531.

    CAS  Google Scholar 

  5. G.A. Parks, The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems, Chem. Rev., 65(1965), No. 2, p. 177.

    CAS  Google Scholar 

  6. R.M. Pashley, Hydration forces between mica surfaces in electrolyte solutions, Adv. Colloid Interface Sci., 16(1982), No. 1, p. 57.

    CAS  Google Scholar 

  7. R.M. Pashley and J.N. Israelachvili, DLVO and hydration forces between mica surfaces in Mg2+, Ca2+, Sr2+, and Ba2+ chloride solutions, J. Colloid Interface Sci., 97(1984), No. 2, p. 446.

    CAS  Google Scholar 

  8. J.P. Chapel, Electrolyte species dependent hydration forces between silica surfaces, Langmuir, 10(1994), No. 11, p. 4237.

    CAS  Google Scholar 

  9. A. Chandra, Dynamics of electrical double layer formation at a charged solid surface, J. Mol. Struct., 430(1998), p. 105.

    CAS  Google Scholar 

  10. K.D. Collins and M.W. Washabaugh, The Hofmeister effect and the behaviour of water at interfaces, Q. Rev. Biophys., 18(1985), No. 4, p. 323.

    CAS  Google Scholar 

  11. M.M. Hatlo, R. van Roij, and L. Lue, The electric double layer at high surface potentials: The influence of excess ion polarizability, Europhys. Lett., 97(2012), No. 2, art. No. 28010.

  12. M.E. Fleharty, F. Van Swol, and D.N. Petsev, Solvent role in the formation of electric double layers with surface charge regulation: A bystander or a key participant?, Phys. Rev. Lett., 116(2016), No. 4, art. No. 048301.

  13. S. Dewan, M.S. Yeganeh, and E. Borguet, Experimental correlation between interfacial water structure and mineral reactivity, J. Phys. Chem. Lett., 4(2013), No. 11, p. 1977.

    CAS  Google Scholar 

  14. M. Holovko, M. Druchok, and T. Bryk, A molecular dynamics study of the hydrated-hydrolyzed structure of multivalent cations based on the model of primitive cation, J. Mol. Liq., 131–132(2007), p. 65.

    Google Scholar 

  15. Q.Y. Hu, C. Weber, H.W. Cheng, F.U. Renner, and M. Valtiner, Anion layering and steric hydration repulsion on positively charged surfaces in aqueous electrolytes, ChemPhysChem, 18(2017), No. 21, p. 3056.

    CAS  Google Scholar 

  16. R. Scheu, B.M. Rankin, Y.X. Chen, K.C. Jena, D. Ben-Amotz, and S. Roke, Charge asymmetry at aqueous hydrophobic interfaces and hydration shells, Angew. Chem. Int. Ed., 53(2014), No. 36, p. 9560.

    CAS  Google Scholar 

  17. C.L. Peng, F.F. Min, L.Y. Liu, and J. Chen, The adsorption of CaOH+ on (001) basal and (010) edge surface of Na-montmorillonite: A DFT study, Surf. Interface Anal., 49(2017), No. 4, p. 267.

    CAS  Google Scholar 

  18. C.F. Liu, F.F. Min, L.Y. Liu, and J. Chen, Density functional theory study of water molecule adsorption on the α-quartz (001) surface with and without the presence of Na+, Mg2+, and Ca2+, ACS Omega, 4(2019), No. 7, p. 12711.

    CAS  Google Scholar 

  19. C.J. Van Oss, R.J. Good, and M.K. Chaudhury, The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces, J. Colloid Interface Sci., 111(1986), No. 2, p. 378.

    CAS  Google Scholar 

  20. Q. Du, E. Freysz, and Y.R. Shen, Vibrational spectra of water molecules at quartz/water interfaces, Phys. Rev. Lett., 72(1994), No. 2, p. 238.

    CAS  Google Scholar 

  21. S.X. Song, C.S. Peng, M.A. Gonzalez-Olivares, A. Lopez-Valdivieso, and T. Fort, Study on hydration layers near nanoscale silica dispersed in aqueous solutions through viscosity measurement, J. Colloid Interface Sci., 287(2005), No. 1, p. 114.

    CAS  Google Scholar 

  22. A. Chatterjee, T. Iwasaki, T. Ebina, and A. Miyamoto, A DFT study on clay-cation-water interaction in montmorillonite and beidellite, Comput. Mater. Sci., 14(1999), No. 1–4, p. 119.

    CAS  Google Scholar 

  23. C.L. Peng, F.F. Min, L.Y. Liu, and J. Chen, A periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surface, Appl. Surf. Sci., 387(2016), p. 308.

    CAS  Google Scholar 

  24. H. Yi, F.F. Jia, Y.L. Zhao, W. Wang, S.X. Song, H.Q. Li, and C. Liu, Surface wettability of montmorillonite (001) surface as affected by surface charge and exchangeable cations: A molecular dynamic study, Appl. Surf. Sci., 459(2018), p. 148.

    CAS  Google Scholar 

  25. H.L. Li, S.X. Song, Y.L. Zhao, Y. Nahmad, and T.X. Chen, Comparison study on the effect of interlayer hydration and solvation on montmorillonite delamination, JOM, 69(2017), No. 2, p. 254.

    CAS  Google Scholar 

  26. D.F. Parsons and B.W. Ninham, Surface charge reversal and hydration forces explained by ionic dispersion forces and surface hydration, Colloids Surf. A, 383(2011), No. 1–3, p. 2.

    CAS  Google Scholar 

  27. J.I. Kilpatrick, S.H. Loh, and S.P. Jarvis, Directly probing the effects of ions on hydration forces at interfaces, J. Am. Chem. Soc., 135(2013), No. 7, p. 2628.

    CAS  Google Scholar 

  28. F.F. Min, C.L. Peng, and L.Y. Liu, Investigation on hydration layers of fine clay mineral particles in different electrolyte aqueous solutions, Powder Technol., 283(2015), p. 368.

    CAS  Google Scholar 

  29. C.Y. Park, P.A. Fenter, K.L. Nagy, and N.C. Sturchio, Hydration and distribution of ions at the mica-water interface, Phys. Rev. Lett., 97(2006), No. 1, art. No. 016101.

  30. J. Morag, M. Dishon, and U. Sivan, The governing role of surface hydration in ion specific adsorption to silica: An AFM-based account of the Hofmeister universality and its reversal, Langmuir, 29(2013), No. 21, p. 6317.

    CAS  Google Scholar 

  31. Y.Z. Li, C. Zhang, Y.P. Jiang, T.J. Wang, and H.F. Wang, Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization, Desalination, 399(2016), p. 171.

    CAS  Google Scholar 

  32. D.F. Parsons and A. Salis, Hofmeister effects at low salt concentration due to surface charge transfer, Curr. Opin. Colloid Interface Sci., 23(2016), p. 41.

    CAS  Google Scholar 

  33. S. Veeramasuneni, Y.H. Hu, M.R. Yalamanchili, and J.D. Miller, Interaction forces at high ionic strengths: The role of polar interfacial interactions, J. Colloid Interface Sci., 188(1997), No. 2, p. 473.

    CAS  Google Scholar 

  34. H.J. Butt, Electrostatic interaction in atomic force microscopy, Biophys. J., 60(1991), No. 4, p. 777.

    CAS  Google Scholar 

  35. A. Grabbe and R.G. Horn, Double-layer and hydration forces measured between silica sheets subjected to various surface treatments, J. Colloid Interface Sci., 157(1993), No. 2, p. 375.

    CAS  Google Scholar 

  36. Z. Zachariah, R.M. Espinosa-Marzal, and M.P. Heuberger, Ion specific hydration in nano-confined electrical double layers, J. Colloid Interface Sci, 506(2017), p. 263.

    CAS  Google Scholar 

  37. T. Baimpos, B.R. Shrestha, S. Raman, and M. Valtiner, Effect of interfacial ion structuring on range and magnitude of electric double layer, hydration, and adhesive interactions between mica surfaces in 0.05–3 M Li+ and Cs+ electrolyte solutions, Langmuir, 30(2014), No. 15, p. 4322.

    CAS  Google Scholar 

  38. P.F. Low, Influence of adsorbed water on exchangeable ion movement, Clays Clay Miner., 9(1960), No. 1, p. 219.

    Google Scholar 

  39. M. Manciu and E. Ruckenstein, Specific ion effects via ion hydration: I. Surface tension, Adv. Colloid Interface Sci., 105(2003), No. 1–3, p. 63.

    CAS  Google Scholar 

  40. H.H. Huang and E. Ruckenstein, Effect of hydration of ions on double-layer repulsion and the hofmeister series, J. Phys. Chem. Lett., 4(2013), No. 21, p. 3725.

    CAS  Google Scholar 

  41. S.J. Miklavic and B.W. Ninham, Competition for adsorption sites by hydrated ions, J. Colloid Interface Sci., 134(1990), No. 2, p. 305.

    CAS  Google Scholar 

  42. P.M. Biesheuvel and M. van Soestbergen, Counterion volume effects in mixed electrical double layers, J. Colloid Interface Sci., 316(2007), No. 2, p. 490.

    CAS  Google Scholar 

  43. H.J. Butt, Measuring local surface charge densities in electrolyte solutions with a scanning force microscope, Biophys. J., 63(1992), No. 2, p. 578.

    CAS  Google Scholar 

  44. N. Cuvillier and F. Rondelez, Breakdown of the Poisson-Boltzmann description for electrical double layers involving large multivalent ions, Thin Solid Films, 327–329(1998), p. 19.

    Google Scholar 

  45. J. Sotres, A. Lostao, C. Gómez-Moreno, and A.M. Baró, Jumping mode AFM imaging of biomolecules in the repulsive electrical double layer, Ultramicroscopy, 107(2007), No. 12, p. 1207.

    CAS  Google Scholar 

  46. W.F. Heinz and J.H. Hoh, Relative surface charge density mapping with the atomic force microscope, Biophys. J., 76(1999), No. 1, p. 528.

    CAS  Google Scholar 

  47. T. Hiemstra and W.H. Van Riemsdijk, On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides, J. Colloid Interface Sci., 301(2006), No. 1, p. 1.

    CAS  Google Scholar 

  48. X.H. Yin, V. Gupta, H. Du, X.M. Wang, and J.D. Miller, Surface charge and wetting characteristics of layered silicate minerals, Adv. Colloid Interface Sci., 179–182(2012), p. 43.

    Google Scholar 

  49. J. Liu, L. Sandaklie-Nikolova, X.M. Wang, and J.D. Miller, Surface force measurements at kaolinite edge surfaces using atomic force microscopy, J. Colloid Interface Sci., 420(2014), p. 35.

    CAS  Google Scholar 

  50. T.X. Chen, Y.L. Zhao, H.L. Li, J. Liu, and S.X. Song, Electrokinetic characteristics of calcined kaolinite in aqueous electrolytic solutions, Surf. Rev. Lett., 22(2015), No. 3, art. No. 1550041.

  51. P. Sinha, I. Szilagyi, F.J. Montes Ruiz-Cabello, P. Maroni, and M. Borkovec, Attractive forces between charged colloidal particles induced by multivalent ions revealed by confronting aggregation and direct force measurements, J. Phys. Chem. Lett., 4(2013), No. 4, p. 648.

    CAS  Google Scholar 

  52. A.W. Adamson, Physical Chemistry of Surfaces, John Wiley & Sons Inc., New York, 1990, p. 134.

    Google Scholar 

  53. B.V. Derjaguin and S.S. Dukhin, Theory of flotation of small and medium-size particles, Prog. Surf. Sci., 43(1993), No. 1–4, p. 241.

    Google Scholar 

  54. D. Andelman, Electrostatic properties of membranes: the Poisson-Boltzmann theory, [in] R. Lipowsky and E. Sackmann, eds., Handbook of Biological Physics, Elsevier, Nederland, 1995, p. 603.

    Google Scholar 

  55. I. Borukhov, D. Andelman, and H. Orland, Adsorption of large ions from an electrolyte solution: A modified Poisson-Boltzmann equation, Electrochim. Acta, 46(2000), No. 2–3, p. 221.

    CAS  Google Scholar 

  56. X.M. Liu, H. Li, R. Li, and R. Tian, Analytical solutions of the nonlinear Poisson-Boltzmann equation in mixture of electrolytes, Surf. Sci., 607(2013), p. 197.

    CAS  Google Scholar 

  57. P.H. R. Alijó, F.W. Tavares, and E.C. Biscaia Jr, Double layer interaction between charged parallel plates using a modified Poisson-Boltzmann equation to include size effects and ion specificity, Colloids Surf. A, 412(2012), p. 29.

    Google Scholar 

  58. D. Ben-Yaakov and D. Andelman, Revisiting the Poisson-Boltzmann theory: Charge surfaces, multivalent ions and inter-plate forces, Physica A, 389(2010), No. 15, p. 2956.

    CAS  Google Scholar 

  59. J.P. Hsu, H.Y. Yu, and S. Tseng, Approximate analytical expressions for the electrical potential between two planar, cylindrical, and spherical surfaces, J. Phys. Chem. B, 110(2006), No. 49, p. 25007.

    CAS  Google Scholar 

  60. J.P. Hsu and C.H. Huang, Electrical potentials of two identical planar, cylindrical, and spherical colloidal particles in a saltfree medium, J. Colloid Interface Sci., 348(2010), No. 2, p. 402.

    CAS  Google Scholar 

  61. J. Stankovich and S.L. Carnie, Interactions between two spherical particles with nonuniform surface potentials: The linearized Poisson-Boltzmann theory, J. Colloid Interface Sci., 216(1999), No. 2, p. 329.

    CAS  Google Scholar 

  62. J.K. Wang, M.R. Wang, and Z.X. Li, Lattice evolution solution for the nonlinear Poisson-Boltzmann equation in confined domains, Commun. Nonlinear Sci. Numer. Simul., 13(2008), No. 3, p. 575.

    Google Scholar 

  63. L.C. Liu and I. Neretnieks, Homo-interaction between parallel plates at constant charge, Colloids Surf. A, 317(2008), No. 1–3, p. 636.

    CAS  Google Scholar 

  64. R. Kjellander, T. Åkesson, B. Jönsson, and S. Marčelja, Double layer interactions in mono and divalent electrolytes: A comparison of the anisotropic HNC theory and Monte Carlo simulations, J. Chem. Phys., 97(1992), No. 2, p. 1424.

    CAS  Google Scholar 

  65. S. Kewalramani, G.I. Guerrero-García, L.M. Moreau, J.W. Zwanikken, C.A. Mirkin, M.O. de La Cruz, and M.J. Bedzyk, Electrolyte-mediated assembly of charged nanoparticles, ACS Cent. Sci., 2(2016), No. 4, p. 219.

    CAS  Google Scholar 

  66. G.I. Guerrero-García, E. González-Tovar, M. Lozada-Cassou, and F. de J. Guevara-Rodríguez, The electrical double layer for a fully asymmetric 895 electrolyte around a spherical colloid?: An integral equation study, J. Chem. Phys., 123(2005), No. 3, art. No. 034703.

  67. G.I. Guerrero-García, E. González-Tovar, and M. Chávez-Páez, Simulational and theoretical study of the spherical electrical double layer for a size-asymmetric electrolyte: The case of big coions, Phys. Rev. E, 80(2009), No. 2, art. No. 021501.

  68. G.I. Guerrero-García, E. González-Tovar, and M.O. de la Cruz, Effects of the ionic size-asymmetry around a charged nanoparticle: Unequal charge neutralization and electrostatic screening, Soft Matter, 6(2010), No. 9, p. 2056.

    Google Scholar 

  69. G.I. Guerrero-García, E. González-tovar, and M.O. de la Cruz, Entropic effects in the electric double layer of model colloids with size-asymmetric 907 monovalent ions, J. Chem. Phys., 135(2011), No. 5, art. No. 054701.

  70. G.I. Guerrero-García, P. González-Mozuelos, and M.O. de la Cruz, Potential of mean force between identical charged nanoparticles immersed in a size-asymmetric monovalent electrolyte, J. Chem. Phys., 135(2011), No. 16, art. No. 164705.

  71. G.I. Guerrero-García and M.O. de la Cruz, Inversion of the electric field at the electrified liquid-liquid interface, J. Chem. Theory Comput., 9(2013), No. 1, p. 1.

    Google Scholar 

  72. G.I. Guerrero-García, Y.F. Jing, and M.O. de la Cruz, Enhancing and reversing the electricfield at the oil-water interface with size-asymmetric monovalent ions, Soft Matter, 9(2013), No. 26, p. 6046.

    Google Scholar 

  73. Z. Ovanesyan, B. Medasani, M.O. Fenley, G.I. Guerrero-García, M.O. de la Cruz, and M. Marucho, Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: Theory, simulations, and experiments, J. Chem. Phys., 141(2014), No. 22, art. No. 225103.

  74. G.I. Guerrero-García, E. González-Tovar, M. Quesada-Pérez, and A. Martín-Molina, The non-dominance of counterions in charge asymmetric electrolytes: Non-monotonic precedence of the electrostatic screening and local inversion of the electric field by multivalent coions, Phys. Chem. Chem. Phys., 18(2016), No. 31, p. 21852.

    Google Scholar 

  75. G.I. Guerrero-García, P. Gonzalez-Mozuelos, and M.O. de la Cruz, Large counterions boost the solubility and renormalized charge of suspended nanoparticles, ACS Nano, 7(2013), No. 11, p. 9714.

    Google Scholar 

  76. G.I. Guerrero-García and M.O. de la Cruz, Polarization effects of dielectric nanoparticles in aqueous charge-asymmetric electrolytes, J. Phys. Chem. B, 118(2014), No. 29, p. 8854.

    Google Scholar 

  77. G.I. Guerrero-García, E. González-Tovar, M. Chávez-Páez, J. Kłos, and S. Lamperski, Quantifying the thickness of the electrical double layer neutralizing a planar electrode: The capacitive compactness, Phys. Chem. Chem. Phys., 20(2018), No. 1, p. 262.

    Google Scholar 

  78. G.I. Guerrero-García, E. González-Tovar, M. Chávez-Páez, and T. Wei, Expansion and shrinkage of the electrical double layer in charge-asymmetric electrolytes: A non-linear Poisson-Boltzmann description, J. Mol. Liq., 277(2019), p. 104.

    Google Scholar 

  79. E. González-Tovar, F. Jiménez-Ángeles, R. Messina, and M. Lozada-Cassou, A new correlation effect in the Helmholtz and surface potentials of the electrical double layer, J. Chem. Phys., 120(2004), No. 20, p. 9782.

    Google Scholar 

  80. C.L. Moraila-Martínez, G.I. Guerrero-García, M. Chávez-Páez, and E. González-Tovar, An experimental/theoretical method to measure the capacitive compactness of an aqueous electrolyte surrounding a spherical charged colloid, J. Chem. Phys., 148(2018), No. 15, art. No. 154703.

  81. C.L. Peng, Y.H. Zhong, G.S. Wang, F.F. Min, and L. Qin, Atomic-level insights into the adsorption of rare earth Y(OH)(sk3−n/n+) (n = 1−3) ions on kaolinite surface, Appl. Surf. Sci., 469(2019), p. 357.

    CAS  Google Scholar 

  82. H.L. Li, S.X. Song, X.S. Dong, F.F. Min, Y.L. Zhao, C.L. Peng, and Y. Nahmad, Molecular dynamics study of crystalline swelling of montmorillonite as affected by interlayer cation hydration, JOM, 70(2018), No. 4, p. 479.

    CAS  Google Scholar 

  83. A. Torres, R. van Roij, and G. Téllez, Finite thickness and charge relaxation in double-layer interactions, J. Colloid Interface Sci., 301(2006), No. 1, p. 176.

    CAS  Google Scholar 

  84. V.N. Paunov, R.I. Dimova, P.A. Kralchevsky, G. Broze, and A. Mehreteab, The hydration repulsion between charged surfaces as an interplay of volume exclusion and dielectric saturation effects, J. Colloid Interface Sci., 182(1996), No. 1, p. 239.

    CAS  Google Scholar 

  85. J.J. Adler, Y.I. Rabinovich, and B.M. Moudgil, Origins of the non-DLVO force between glass surfaces in aqueous solution, J. Colloid Interface Sci., 237(2001), No. 2, p. 249.

    CAS  Google Scholar 

  86. H.H. Liu, J. Lanphere, S. Walker, and Y. Cohen, Effect of hydration repulsion on nanoparticle agglomeration evaluated via a constant number Monte-Carlo simulation, Nanotechnology, 26(2015), No. 4, art. No. 045708.

  87. S. Veeramasuneni, M.R. Yalamanchili, and J.D. Miller, Interactions between dissimilar surfaces in high ionic strength solutions as determined by atomic force microscopy, Colloids Surf. A, 131(1998), No. 1–3, p. 77.

    CAS  Google Scholar 

  88. J.M. Duan, Interfacial forces between silica surfaces measured by atomic force microscopy, J. Environ. Sci., 21(2009), No. 1, p. 30.

    Google Scholar 

  89. N. Schelero, G. Hedicke, P. Linse, and R.V. Klitzing, Effects of counterions and co-ions on foam films stabilized by anionic dodecyl sulfate, J. Phys. Chem. B, 114(2010), No. 47, p. 15523.

    CAS  Google Scholar 

  90. K.J. Mysels and M.N. Jones, Direct measurement of the variation of double-layer repulsion with distance, Discuss. Faraday Soc., 42(1966), p. 42.

    Google Scholar 

  91. A. Sheludko, Thin liquid films, Adv. Colloid Interface Sci, 1(1967), No. 4, p. 391.

    CAS  Google Scholar 

  92. V. Bergeron and C.J. Radke, Equilibrium measurements of oscillatory disjoining pressures in aqueous foam films, Langmuir, 8(1992), No. 12, p. 3020.

    CAS  Google Scholar 

  93. P.A. Kralchevsky, K.D. Danov, and E.S. Basheva, Hydration force due to the reduced screening of the electrostatic repulsion in few-nanometer-thick films, Curr. Opin. Colloid Interface Sci., 16(2011), No. 6, p. 517.

    CAS  Google Scholar 

  94. D.R. Tadjiev, R.J. Hand, and P. Zeng, Comparison of glass hydration layer thickness measured by transmission electron microscopy and nanoindentation, Mater. Lett., 64(2010), No. 9, p. 1041.

    CAS  Google Scholar 

  95. Y.L. Zhao, H. Yi, F.F. Jia, H.L. Li, C.S. Peng, and S.X. Song, A novel method for determining the thickness of hydration shells on nanosheets: A case of montmorillonite in water, Powder Technol., 306(2017), p. 74.

    CAS  Google Scholar 

  96. J.P. Lowe, D.J. Lowe, A.P.W. Hodder, and A.T. Wilson, A tritium-exchange method for obsidian hydration shell measurement, Chem. Geol., 46(1984), No. 4, p. 351.

    Google Scholar 

  97. M.S. Yeganeh, S.M. Dougal, and H.S. Pink, Vibrational spectroscopy of water at liquid/solid interfaces: Crossing the isoelectric point of a solid surface, Phys. Rev. Lett., 83(1999), No. 6, p. 1179.

    CAS  Google Scholar 

  98. V. Ostroverkhov, G.A. Waychunas, and Y.R. Shen, Vibrational spectra of water at water/α-quartz (0001) interface, Chem. Phys. Lett., 386(2004), No. 1–3, p. 144.

    CAS  Google Scholar 

  99. A.J. Hopkins, C.L. McFearin, and G.L. Richmond, Investigations of the solid-aqueous interface with vibrational sum-frequency spectroscopy, Curr. Opin. Solid State Mater. Sci., 9(2005), No. 1–2, p. 19.

    CAS  Google Scholar 

  100. K. Miyazawa, N. Kobayashi, M. Watkins, A.L. Shluger, K.I. Amanod, and T. Fukuma, A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy, Nanoscale, 8(2016), No. 13, p. 7334.

    CAS  Google Scholar 

  101. R. Ho, J.Y. Yuan, and Z.F. Shao, Hydration force in the atomic force microscope: A computational study, Biophys. J., 75(1998), No. 2, p. 1076.

    CAS  Google Scholar 

  102. K. Kobayashi, N. Oyabu, K. Kimura, S. Ido, K. Suzuki, T. Imai, K. Tagami, M. Tsukada, and H. Yamada, Visualization of hydration layers on muscovite mica in aqueous solution by frequency-modulation atomic force microscopy, J. Chem. Phys., 138(2013), No. 18, art. No. 184704.

  103. H. Yi, X. Zhang, Y.L. Zhao, L.Y. Liu, and S.X. Song, Molecular dynamics simulations of hydration shell on montmorillonite (001) in water, Surf. Interface Anal., 48(2016), No. 9, p. 976.

    CAS  Google Scholar 

  104. J.W. Wang, A.G. Kalinichev, and R.J. Kirkpatrick, Molecular modeling of water structure in nano-pores between brucite (001) surfaces, Geochimi. Cosmochim. Acta, 68(2004), No. 16, p. 3351.

    CAS  Google Scholar 

  105. D.R. Martin and D.V. Matyushov, Hydration shells of proteins probed by depolarized light scattering and dielectric spectroscopy: Orientational structure is significant, positional structure is not, J. Chem. Phys, 141(2014), No. 22, art. No. 22D501.

  106. T.D. Perry, R.T. Cygan, and R. Mitchell, Molecular models of a hydrated calcite mineral surface, Geochim. Cosmochim. Acta, 71(2007), No. 24, p. 5876.

    CAS  Google Scholar 

  107. Y.S. Leng, Hydration force between mica surfaces in aqueous KCl electrolyte solution, Langmuir, 28(2012), No. 12, p. 5339.

    CAS  Google Scholar 

  108. J. Chen, F.F. Min, L.Y. Liu, and C.F. Liu, Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulations, Appl. Surf. Sci., 476(2019), p. 6.

    CAS  Google Scholar 

  109. L. Duponchel, S. Laurette, B. Hatirnaz, A. Treizebre, F. Affouard, and B. Bocquet, Terahertz microfluidic sensor for in situ exploration of hydration shell of molecules, Chemom. Intell. Lab. Syst., 123(2013), p. 28.

    CAS  Google Scholar 

  110. I.C. Bourg and G. Sposito, Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl2) solutions, J. Colloid Interface Sci., 360(2011), No. 2, p. 701.

    CAS  Google Scholar 

  111. D.J. Bonthuis and R.R. Netz, Beyond the continuum: How molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces, J. Phys. Chem. B, 117(2013), No. 39, p. 11397.

    CAS  Google Scholar 

  112. T. López-León, M.J. Santander-Ortega, J.L. Ortega-Vinuesa, and D.L. Bastos-González, Hofmeister effects in colloidal systems: Influence of the surface nature, J. Phys. Chem. C, 112(2008), No. 41, p. 16060.

    Google Scholar 

  113. E.A. Leed and C.G. Pantano, Computer modeling of water adsorption on silica and silicate glass fracture surfaces, J. Non-Cryst. Solids, 325(2003), No. 1–3, p. 48.

    CAS  Google Scholar 

  114. C.D.F. Honig and W.A. Ducker, No-slip hydrodynamic boundary condition for hydrophilic particles, Phys. Rev. Lett., 98(2007), No. 2, art. No. 028305.

  115. L. Joly, C. Ybert, E. Trizac, and L. Bocquet, Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics, J. Chem. Phys., 125(2006), No. 20, art. No. 204716.

  116. C. Sendner, D. Horinek, L. Bocquet, and R.R. Netz, Interfacial water at hydrophobic and hydrophilic surfaces: Slip, viscosity, and diffusion, Langmuir, 25(2009), No. 18, p. 10768.

    CAS  Google Scholar 

  117. L.M. Alarcón, D.C. Malaspina, E.P. Schulz, M.A. Frechero, and G.A. Appignanesi, Structure and orientation of water molecules at model hydrophobic surfaces with curvature: From graphene sheets to carbon nanotubes and fullerenes, Chem. Phys., 388(2011), No. 1–3, p. 47.

    Google Scholar 

  118. G.D. Smith, J.E. Swain, and C.L. Bormann, Microfluidics for gametes, embryos, and embryonic stem cells, Semin. Reprod. Med., 29(2011), No. 1, p. 5.

    CAS  Google Scholar 

  119. Y.I. Chang and P.K. Chang, The role of hydration force on the stability of the suspension of Saccharomyces cerevisiae—Application of the extended DLVO theory, Colloids Surf. A, 211(2002), No. 1, p. 67.

    CAS  Google Scholar 

  120. J.J. Valle-Delgado, J.A. Molina-Bolívar, F. Galisteo-González, and M.J. Gálvez-Ruiz, Evidence of hydration forces between proteins, Curr. Opin. Colloid Interface Sci., 16(2011), No. 6, p. 572.

    CAS  Google Scholar 

  121. A. Bhattacharjee, A.B. Pribil, B.R. Randolf, B.M. Rode, and T.S. Hofer, Hydration of Mg2+ and its influence on the water hydrogen bonding network via ab initio QMCF MD, Chem. Phys. Lett., 536(2012), p. 39.

    CAS  Google Scholar 

  122. S.J. Suresh, K. Kapoor, S. Talwar, and A. Rastogi, Internal structure of water around cations, J. Mol. Liq., 174(2012), p. 135.

    CAS  Google Scholar 

  123. C. Kritayakornupong, K. Plankensteiner, and B.M. Rode, Dynamics in the hydration shell of Hg2+ ion: Classical and ab initio QM/MM molecular dynamics simulations, Chem. Phys. Lett., 371(2003), No. 3–4, p. 438.

    CAS  Google Scholar 

  124. A. Tongraar and B.M. Rode, Dynamical properties of water molecules in the hydration shells of Na+ and K+: Ab initio QM/MM molecular dynamics simulations, Chem. Phys. Lett., 385(2004), No. 5–6, p. 378.

    CAS  Google Scholar 

  125. L. Gierst, L. Vandenberghen, E. Nicolas, and A. Fraboni, Ion pairing mechanisms in electrode processes, J. Electrochem. Soc., 113(1966), No. 10, p. 1025.

    CAS  Google Scholar 

  126. K.D. Collins, Ions from the Hofmeister series and osmolytes: Effects on proteins in solution and in the crystallization process, Methods, 34(2004), No. 3, p. 300.

    CAS  Google Scholar 

  127. K.D. Collins, Charge density-dependent strength of hydration and biological structure, Biophys. J., 72(1997), No. 1, p. 65.

    CAS  Google Scholar 

  128. S. Adapa, D.R. Swamy, S. Kancharla, S. Pradhan, and A. Malani, Role of mono- and divalent surface cations on the structure and adsorption behavior of water on mica surface, Langmuir, 34(2018), No. 48, p. 14472.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51804213, 51820105006, 51474167, 51674183, and 51674174) and the China Scholarships Council (No. 201906935041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei-fei Jia or Jian-bo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Hl., Xu, Wn., Jia, Ff. et al. Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review. Int J Miner Metall Mater 27, 857–871 (2020). https://doi.org/10.1007/s12613-020-2078-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2078-0

Keywords

Navigation