Skip to main content
Log in

Abstract

We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ∼2 ps laser pulses at an input energy of ∼350 µJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ∼340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ∼280 nm. Additionally, coarse structures with a period of ∼700 nm were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. S.I. Dolgaev, A.A. Lyalin, A.V. Simakin, V.V. Voronov, and G.A. Shafeev, Fast etching and metallization of via-holes in sapphire with the help of radiation by a copper vapor laser, Appl. Surf: Sci., 109–110(1997), p. 201.

    Article  Google Scholar 

  2. A.V. Simakin, V.V. Voronov, N.A. Kirichenko, and G.A. Shafeev, Nanoparticles produced by laser ablation of solids in liquid environment, Appl. Phys. A, 79(2004), No. 4–6, p. 1127.

    Article  CAS  Google Scholar 

  3. P.V. Kazakevich, A.V. Simakin, and G.A. Shafeev, Formation of periodic structures upon laser ablation of metal targets in liquids, Quantum Electron., 35(2005), No. 9, p. 831.

    Article  CAS  Google Scholar 

  4. P.V. Kazakevich, A.V. Simakin, V.V. Voronov, and G.A. Shafeev, Laser induced synthesis of nanoparticles in liquids, Appl. Surf. Sci., 252(2006), No. 13, p. 4373.

    Article  CAS  Google Scholar 

  5. S.L. Truong, G. Levi, F. Bozon-Verduraz, A.V. Petrovskaya, A.V. Simakin, and G.A. Shafeev, Generation of nanospikes via laser ablation of metals in liquid environment and their activity in surface-enhanced Raman scattering of organic molecules, App. Surf. Sci., 254(2007), No. 4, p. 1236.

    Article  CAS  Google Scholar 

  6. N. Bärsch, J. Jakobi, S. Weiler, and S. Barcikowski, Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone, Nanotechnoloy, 20(2009), No. 44, art. No. 445603.

  7. E. Messina, E. Cavallaro, A. Cacciola, R. Saija, F. Borghese, P. Denti, B. Fazio, C. D’Andrea, P.G. Gucciardi, M.A. Lati, M. Meneghetti, G. Compagnini, V. Amendola, and O.M. Marago, Manipulation and Raman spectroscopy with optically trapped metal nanoparticles obtained by pulsed laser ablation in liquids, J. Phys. Chem. C, 115(2011), No. 12, p. 5115.

    Article  CAS  Google Scholar 

  8. G.K. Podagatlapalli, S. Hamad, S. Sreedhar, S.P. Tewari, and S. Venugopal Rao, Fabrication and characterization of aluminum nanostructures and nanoparticles obtained using femtosecond ablation technique, Chem. Phys. Lett., 530(2012), p. 93.

    Article  CAS  Google Scholar 

  9. G.K. Podagatlapalli, S. Hamad, S.P. Tewari, S. Sreedhar, M.D. Prasad, and S. Venugopal Rao, Silver nano-entities through ultrafast double ablation in aqueous media for surface enhanced Raman scattering and photonics applications, J. Appl. Phys., 113(2013), No. 7, art. No. 073106.

  10. T.E. Itina, On nanoparticle formation by laser ablation in liquids, J. Phys. Chem. C, 115(2011), No. 12, p. 5044.

    Article  CAS  Google Scholar 

  11. N.G. Semaltianos, Nanoparticles by laser ablation, Crit. Rev. Solid State Mater. Sci., 35(2010), No. 2, p. 105.

    Article  CAS  Google Scholar 

  12. S. Venugopal Rao, G.K. Podagatlapalli, and S. Hamad, Ultrafast laser ablation in liquids for nanomaterials and applications, J. Nanosci. Nanotechnol., 14(2014), No. 2, p. 1364.

    Article  CAS  Google Scholar 

  13. R.M. Tilaki, A.I. Zad, and S.M. Mahdavi, Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media, Appl. Phys. A, 84(2006), No. 1–2, p. 215.

    Article  CAS  Google Scholar 

  14. L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, Pergamon Press, New York, 1989.

    Google Scholar 

  15. B. Kumar, D. Yadav, and R.K. Thareja, Growth dynamics of nanoparticles in laser produced plasma in liquid ambient, J. Appl. Phys., 110(2011), No. 7, art. No. 074903.

  16. S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, and G. Raciukaitis, Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow, Appl. Phys. Lett., 91(2007), No. 8, art. No. 083113.

  17. E. Rebollar, J.R.V. de Aldana, I. Martín-Fabiani, M. Hernández, D.R. Rueda, T.A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, Assessment of femtosecond laser induced periodic surface structures on polymer films, Phys. Chem. Chem. Phys., 15(2013), No. 27, p. 11287.

    Article  CAS  Google Scholar 

  18. J. Reif, O. Varlamova, S. Varlamov, and M. Bestehorn, The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation, Appl. Phys. A, 104(2011), No. 3, p. 969.

    Article  CAS  Google Scholar 

  19. J. Bonse, A. Rosenfeld, and J. Krüger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses, J. Appl. Phys., 106(2009), No. 10, art. No. 104910.

  20. X. Jia, T.Q. Jia, N.N. Peng, D.H. Feng, S.A. Zhang, and Z.R. Sun, Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging, J. Appl. Phys., 115(2014), No. 14, art. No. 143102.

  21. F. Costache, M. Henyk, and J. Reif, Modification of dielectric surfaces with ultra-short laser pulses, Appl. Surf. Sci., 186(2002), No. 1–4, p. 352.

    Article  CAS  Google Scholar 

  22. A.Y. Vorobyev and C.L. Guo, Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals, Appl. Phys. A, 86(2007), No. 3, p. 321.

    Article  CAS  Google Scholar 

  23. H.R. Dehghanpour, Laser wavelength and dose effects on Al nanoparticles structural formation in deionized water, J. Laser Appl., 28(2016), No. 4, art. No. 042007.

  24. E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G.A. Shafeev, Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids, Appl. Surf. Sci., 255(2009), No. 10, p. 5346.

    Article  CAS  Google Scholar 

  25. E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, and G.A. Shafeev, Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses, Opt. Express, 17(2009), No. 15, p. 12650.

    Article  CAS  Google Scholar 

  26. E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G.A. Shafeev, Laser writing of nanostructures on bulk Al via its ablation in liquids, Nanotcchnoloy, 20(2009), No. 10, art. No. 105303.

  27. J. Sun and S.L. Simon, The melting behavior of aluminum nanoparticles, Thermochim. Acta, 463(2007), No. 1–2, p. 32.

    Article  CAS  Google Scholar 

  28. G.K. Podagatlapalli, S. Hamad, M.A. Mohiddon, and S.V. Rao, Fabrication of nanoparticles and nanostructures using ultrafast laser ablation of silver with Bessel beams, Laser Phys. Lett., 12(2015), No. 3, p. 036003.

    Article  Google Scholar 

  29. D.S. Zhang, B. Gökce, and S. Barcikowski, Laser synthesis and processing of colloids: Fundamentals and applications, Chem. Rev., 117(2017), No. 5, p. 3990.

    Article  CAS  Google Scholar 

  30. A. Santagata, A. De Bonis, A. De Giacomo, M. Dell’Aglio, A. Laurita, G.S. Senesi, R. Gaudiuso, S. Orlando, R. Teghil, and G.P. Parisi, Carbon-based nanostructures obtained in water by ultrashort laser pulses, J. Phys. Chem. C, 115(2011), No. 12, p. 5160.

    Article  CAS  Google Scholar 

  31. A. Menéndez-Manjón, B.N. Chichkov, and S. Barcikowski, Influence of water temperature on the hydrodynamic diameter of gold nanoparticles from laser ablation, J. Phys. Chem. C, 114(2010), No. 6, p. 2499.

    Article  Google Scholar 

  32. A. De Bonis, M. Sansone, L. D’Alessio, A. Galasso, A. Santagata, and R. Teghil, Dynamics of laser-induced bubble and nanoparticles generation during ultra-short laser ablation of Pd in liquid, J. Phys. D: Appl. Phys., 46(2013), No. 44, p. 445301.

    Article  Google Scholar 

  33. D. Jost, W. Lüthy, and H.P. Weber, Laser pulse width dependent surface ripples on silicon, Appl. Phys. Lett., 49(1986), No. 11, p. 625.

    Article  CAS  Google Scholar 

  34. P.M. Fauchet and A.E. Siegman, Surface ripples on silicon and gallium arsenide under picosecond laser illumination, Appl Phys. Lett., 40(1982), No. 9, p. 824.

    Article  CAS  Google Scholar 

  35. J.E. Sipe, J.F. Young, J.S. Preston, and H.M. van Driel, Laser-induced periodic surface structure. I. Theory, Phys. Rev. B, 27(1983), No. 2, p. 1141.

    Article  CAS  Google Scholar 

  36. P.A. Temple and M.J. Soileau, Polarization charge model for laser-induced ripple patterns in dielectric materials, IEEE J. Quantum Electron., 17(1981), No. 10, p. 2067.

    Article  Google Scholar 

  37. M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, and Z.Z. Xu, Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser, ACS Nano, 3(2009), No. 12, p. 4062.

    Article  CAS  Google Scholar 

  38. J. Reif, O. Varlamova, and F. Costache, Femtosecond laser induced nanostructure formation: Self-organization control parameters, Appl. Phys. A, 92(2008), No. 4, p. 1019.

    Article  CAS  Google Scholar 

  39. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, Effect of surface roughening on femtosecond laser-induced ripple structures, Appl. Phys. Lett., 90(2007), No. 15, art. No. 153115.

  40. D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, and J. Bonse, Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO, J. Appl. Phys., 105(2009), No. 3, art. No. 034908.

  41. L. Xue, J.J. Yang, Y. Yang, Y.S. Wang, and X.N. Zhu, Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses, Appl. Phys. A, 109(2012), No. 2, p. 357.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the Advanced Centre of Research in High Energy Materials (ACRHEM) laboratories, University of Hyderabad, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Krishna Podagatlapalli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swamulu, A.B., Rao, S.V. & Podagatlapalli, G.K. Non-spherical aluminum nanoparticles fabricated using picosecond laser ablation. Int J Miner Metall Mater 27, 980–986 (2020). https://doi.org/10.1007/s12613-020-2032-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2032-1

Keywords

Navigation